Stereoscopic image reflection removal based on Wasserstein Generative Adversarial Network

Xiuyuan Wang, Yikun Pan, D. Lun
{"title":"Stereoscopic image reflection removal based on Wasserstein Generative Adversarial Network","authors":"Xiuyuan Wang, Yikun Pan, D. Lun","doi":"10.1109/VCIP49819.2020.9301892","DOIUrl":null,"url":null,"abstract":"Reflection removal is a long-standing problem in computer vision. In this paper, we consider the reflection removal problem for stereoscopic images. By exploiting the depth information of stereoscopic images, a new background edge estimation algorithm based on the Wasserstein Generative Adversarial Network (WGAN) is proposed to distinguish the edges of the background image from the reflection. The background edges are then used to reconstruct the background image. We compare the proposed approach with the state-of-the- art reflection removal methods. Results show that the proposed approach can outperform the traditional single-image based methods and is comparable to the multiple-image based approach while having a much simpler imaging hardware requirement.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reflection removal is a long-standing problem in computer vision. In this paper, we consider the reflection removal problem for stereoscopic images. By exploiting the depth information of stereoscopic images, a new background edge estimation algorithm based on the Wasserstein Generative Adversarial Network (WGAN) is proposed to distinguish the edges of the background image from the reflection. The background edges are then used to reconstruct the background image. We compare the proposed approach with the state-of-the- art reflection removal methods. Results show that the proposed approach can outperform the traditional single-image based methods and is comparable to the multiple-image based approach while having a much simpler imaging hardware requirement.
基于Wasserstein生成对抗网络的立体图像反射去除
反射去除是计算机视觉中一个长期存在的问题。本文研究了立体图像的反射去除问题。利用立体图像的深度信息,提出了一种新的基于Wasserstein生成对抗网络(WGAN)的背景边缘估计算法,用于区分背景图像的边缘和反射。然后利用背景边缘重建背景图像。我们将所提出的方法与最先进的反射去除方法进行了比较。结果表明,该方法不仅优于传统的基于单图像的方法,而且与基于多图像的方法相当,同时具有更简单的成像硬件要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信