TSV Defects Classification with Machine Learning Approaches

Haitao He, Changhao Luo, Junchen Dong, Yudi Zhao, Min Miao, Kai Zhao
{"title":"TSV Defects Classification with Machine Learning Approaches","authors":"Haitao He, Changhao Luo, Junchen Dong, Yudi Zhao, Min Miao, Kai Zhao","doi":"10.1109/ICTA56932.2022.9963040","DOIUrl":null,"url":null,"abstract":"The S parameter amplitude, latency, resistance, and inductance of TSV-RDL structures with the presence of five kinds of defects are simulated as feature vectors for defect detection and classification. Three nondestructive defect classification schemes for the TSV-RDL structure in advanced packaging are evaluated. Feedforward neural network with rectified linear unit activation function for the backpropagation algorithm is superior for defect classification and may play an important role in design for test and build-in self-repair circuit design.","PeriodicalId":325602,"journal":{"name":"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTA56932.2022.9963040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The S parameter amplitude, latency, resistance, and inductance of TSV-RDL structures with the presence of five kinds of defects are simulated as feature vectors for defect detection and classification. Three nondestructive defect classification schemes for the TSV-RDL structure in advanced packaging are evaluated. Feedforward neural network with rectified linear unit activation function for the backpropagation algorithm is superior for defect classification and may play an important role in design for test and build-in self-repair circuit design.
基于机器学习方法的TSV缺陷分类
将存在5种缺陷的TSV-RDL结构的S参数幅值、时延、电阻和电感作为缺陷检测和分类的特征向量进行仿真。对先进封装中TSV-RDL结构的三种无损缺陷分类方案进行了评价。采用整流线性单元激活函数的前馈神经网络反向传播算法具有较好的缺陷分类能力,可在测试设计和内置自修复电路设计中发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信