Study of error control capability for the new moduli set \({2^{2n+1}+2^{n}-1, 2^{2n+1}-1, 2^{n}-1, 2^{3n},2^{3n+1}-1}\)

S. Modiri, A. Movaghar, A. Barati
{"title":"Study of error control capability for the new moduli set \\({2^{2n+1}+2^{n}-1, 2^{2n+1}-1, 2^{n}-1, 2^{3n},2^{3n+1}-1}\\)","authors":"S. Modiri, A. Movaghar, A. Barati","doi":"10.14419/JACST.V1I4.269","DOIUrl":null,"url":null,"abstract":"In this paper, a new 3-moduli set {2 2n+1 +2 n -1, 2 2n+1 -1, 2 n -1} with an efficient residue-to-binary converter using mixed radix conversion algorithm is presented. Moreover, by adding two redundant modulus {2 3n , 2 3n+1 -1}, a new moduli set in redundant residue number system is provided that can correct up to (2n+2) error bits. Simulation results of the error control algorithm's functionality with C++ programming language for 10'000 different error bits states show that the average percent of error detection capability using the proposed moduli set by setting n=2 is equal to 77.97%.","PeriodicalId":445404,"journal":{"name":"Journal of Advanced Computer Science and Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computer Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14419/JACST.V1I4.269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a new 3-moduli set {2 2n+1 +2 n -1, 2 2n+1 -1, 2 n -1} with an efficient residue-to-binary converter using mixed radix conversion algorithm is presented. Moreover, by adding two redundant modulus {2 3n , 2 3n+1 -1}, a new moduli set in redundant residue number system is provided that can correct up to (2n+2) error bits. Simulation results of the error control algorithm's functionality with C++ programming language for 10'000 different error bits states show that the average percent of error detection capability using the proposed moduli set by setting n=2 is equal to 77.97%.
新模集的误差控制能力研究 \({2^{2n+1}+2^{n}-1, 2^{2n+1}-1, 2^{n}-1, 2^{3n},2^{3n+1}-1}\)
本文给出了一个新的3模集{2 2n+1 +2 n - 1,2 2n+1 - 1,2 n -1},它具有一个有效的残二数转换算法。此外,通过增加两个冗余模{23n, 23n +1 -1},在冗余余数系统中提供了一个新的模集,该模集最多可纠错(2n+2)位。用c++编程语言对10000种不同的错误位状态进行了误差控制算法的仿真结果表明,设置n=2所提出的模集的误差检测能力平均百分比为77.97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信