A Comparative Evaluation of Spatio Temporal Deep Learning Techniques for Crime Prediction

Tawanda Matereke, Clement N. Nyirenda, Mehrdad Ghaziasgar
{"title":"A Comparative Evaluation of Spatio Temporal Deep Learning Techniques for Crime Prediction","authors":"Tawanda Matereke, Clement N. Nyirenda, Mehrdad Ghaziasgar","doi":"10.1109/africon51333.2021.9570858","DOIUrl":null,"url":null,"abstract":"This paper presents a detailed evaluation of three spatio-temporal deep learning architectures for crime prediction. These network architectures are as follows: the Spatio Temporal Residual Network (ST-ResNet), the Deep Multi View Spatio Temporal Network (DMVST-Net), and the Spatio Temporal Dynamic Network (STD-Net). The architectures were trained using the Chicago crime data set. The Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) were used as performance metrics to evaluate the models. Results show that the STD-Net achieved the best results of the three approaches, with an accuracy of 0.89, RMSE of 0.2870, and MAE of 0.2093. The ST-ResNet and DMVST-Net also showed considerable promise. The ST-ResNet achieved an accuracy of 0.83, RMSE of 0.4033 and an MAE of 0.3278 while the DMVST-Net achieved an accuracy of 0.79, RMSE of 0.4171 and an MAE of 0.3455. Future work will include training these algorithms with crime data, which is augmented with external data such as climate and socioeconomic data. Hyperparameter optimization of these algorithms using techniques, such as evolutionary computation, will also be explored.","PeriodicalId":170342,"journal":{"name":"2021 IEEE AFRICON","volume":"227 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE AFRICON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/africon51333.2021.9570858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a detailed evaluation of three spatio-temporal deep learning architectures for crime prediction. These network architectures are as follows: the Spatio Temporal Residual Network (ST-ResNet), the Deep Multi View Spatio Temporal Network (DMVST-Net), and the Spatio Temporal Dynamic Network (STD-Net). The architectures were trained using the Chicago crime data set. The Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) were used as performance metrics to evaluate the models. Results show that the STD-Net achieved the best results of the three approaches, with an accuracy of 0.89, RMSE of 0.2870, and MAE of 0.2093. The ST-ResNet and DMVST-Net also showed considerable promise. The ST-ResNet achieved an accuracy of 0.83, RMSE of 0.4033 and an MAE of 0.3278 while the DMVST-Net achieved an accuracy of 0.79, RMSE of 0.4171 and an MAE of 0.3455. Future work will include training these algorithms with crime data, which is augmented with external data such as climate and socioeconomic data. Hyperparameter optimization of these algorithms using techniques, such as evolutionary computation, will also be explored.
时空深度学习技术在犯罪预测中的比较评价
本文详细评估了用于犯罪预测的三种时空深度学习架构。这些网络架构包括:时空残差网络(ST-ResNet)、深度多视图时空网络(DMVST-Net)和时空动态网络(STD-Net)。这些架构是使用芝加哥犯罪数据集进行训练的。使用均方根误差(RMSE)和平均绝对误差(MAE)作为评估模型的性能指标。结果表明,STD-Net方法在三种方法中取得了最好的结果,准确率为0.89,RMSE为0.2870,MAE为0.2093。ST-ResNet和DMVST-Net也显示出相当大的前景。ST-ResNet的准确率为0.83,RMSE为0.4033,MAE为0.3278;DMVST-Net的准确率为0.79,RMSE为0.4171,MAE为0.3455。未来的工作将包括用犯罪数据训练这些算法,并辅以气候和社会经济数据等外部数据。这些算法的超参数优化使用的技术,如进化计算,也将探讨。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信