A Comparison Of Clipping Strategies For Importance Sampling

Luca Martino, V. Elvira, J. Míguez, Antonio Artés-Rodríguez, P. Djurić
{"title":"A Comparison Of Clipping Strategies For Importance Sampling","authors":"Luca Martino, V. Elvira, J. Míguez, Antonio Artés-Rodríguez, P. Djurić","doi":"10.1109/SSP.2018.8450722","DOIUrl":null,"url":null,"abstract":"Importance Sampling (IS) methods approximate a targeted distribution with a set of weighted samples, drawn from a proposal distribution. Unfortunately, a mismatch between the proposal and the targeted distribution may endanger the performance of the estimators. In this paper, we focus on the so-called nonlinear IS (NIS) framework, where a nonlinear function is applied to the standard importance weights (IWs). The aim of this transformation is to mitigate the well-known problem of the degeneracy of the IWs by controlling the weight variability. We consider the clipping transformation and test its robustness with respect to the choice of the clipping value. We also propose a novel NIS methodology, where not only a subset of weights is modified a posteriori, but also the corresponding samples are moved. We compare these NIS schemes with standard IS and Monte Carlo methods by means of illustrative numerical examples.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Importance Sampling (IS) methods approximate a targeted distribution with a set of weighted samples, drawn from a proposal distribution. Unfortunately, a mismatch between the proposal and the targeted distribution may endanger the performance of the estimators. In this paper, we focus on the so-called nonlinear IS (NIS) framework, where a nonlinear function is applied to the standard importance weights (IWs). The aim of this transformation is to mitigate the well-known problem of the degeneracy of the IWs by controlling the weight variability. We consider the clipping transformation and test its robustness with respect to the choice of the clipping value. We also propose a novel NIS methodology, where not only a subset of weights is modified a posteriori, but also the corresponding samples are moved. We compare these NIS schemes with standard IS and Monte Carlo methods by means of illustrative numerical examples.
重要性抽样的裁剪策略比较
重要性抽样(IS)方法通过从建议分布中提取的一组加权样本来近似目标分布。不幸的是,建议和目标分布之间的不匹配可能危及估计器的性能。在本文中,我们关注所谓的非线性IS (NIS)框架,其中一个非线性函数应用于标准重要性权重(IWs)。这种转换的目的是通过控制权值的可变性来缓解IWs的退化问题。我们考虑了裁剪变换,并测试了它在裁剪值选择方面的鲁棒性。我们还提出了一种新的NIS方法,该方法不仅对权重子集进行后验修改,而且对相应的样本进行移动。我们将这些NIS方案与标准IS和蒙特卡罗方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信