Safety monitoring of power industrial control terminals based on data cleaning

Zhining Lv, Ziheng Hu, Baifeng Ning, Wei Li, Gangfeng Yan, Lifu Ding, Xiasheng Shi, Ningxuan Guo
{"title":"Safety monitoring of power industrial control terminals based on data cleaning","authors":"Zhining Lv, Ziheng Hu, Baifeng Ning, Wei Li, Gangfeng Yan, Lifu Ding, Xiasheng Shi, Ningxuan Guo","doi":"10.1145/3357777.3357781","DOIUrl":null,"url":null,"abstract":"Stable and high-quality electric energy is the main driving force for the development of social science, technology, and the national economic leap. The assessment and monitoring of electrical safety rely on the generation, collection and statistics of large amounts of data by the power system. For the possible problems and impurities in these data, this paper uses the 'local Chebyshev theorem' and the 'near data averaging method' for the attribute values. The error is cleaned, and the 'sorting neighbor algorithm' is used to clean the duplicate data, thereby improving the data quality and realizing the accuracy of the safety monitoring of the power grid of the smart grid.","PeriodicalId":127005,"journal":{"name":"Proceedings of the 2019 the International Conference on Pattern Recognition and Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 the International Conference on Pattern Recognition and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3357777.3357781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stable and high-quality electric energy is the main driving force for the development of social science, technology, and the national economic leap. The assessment and monitoring of electrical safety rely on the generation, collection and statistics of large amounts of data by the power system. For the possible problems and impurities in these data, this paper uses the 'local Chebyshev theorem' and the 'near data averaging method' for the attribute values. The error is cleaned, and the 'sorting neighbor algorithm' is used to clean the duplicate data, thereby improving the data quality and realizing the accuracy of the safety monitoring of the power grid of the smart grid.
基于数据清洗的电力工业控制终端安全监测
稳定、高质量的电能是社会科学技术发展和国民经济飞跃的主要动力。电力安全的评估和监测依赖于电力系统对大量数据的产生、收集和统计。对于这些数据中可能存在的问题和杂质,本文采用了“局部切比雪夫定理”和“近数据平均法”对属性值进行求取。对误差进行清理,并利用“排序邻居算法”对重复数据进行清理,从而提高数据质量,实现智能电网电网安全监测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信