{"title":"Delivery strategy under epidemic based on neural network and ALNS","authors":"Hao Yin, Chenxu Zhang, Jie Yin, Canrong Zhang","doi":"10.1117/12.2657956","DOIUrl":null,"url":null,"abstract":"Under the background of the continuous spread of covid-19, fresh food delivery platforms need to make decisions on how to incorporate epidemic factors into their delivery strategies. In this paper, considering the factors of large activity range, long path, low efficiency and high risk of delivery staff in reservation-type fresh food delivery, combined with the perspective of delivery platform, a path planning model is constructed. we apply the ALNS algorithm to the proposed model and compares it with other classical heuristic algorithms. The results show that our proposed model can effectively reduce risks and improve delivery efficiency.","PeriodicalId":212840,"journal":{"name":"Conference on Smart Transportation and City Engineering","volume":"12460 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Smart Transportation and City Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2657956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Under the background of the continuous spread of covid-19, fresh food delivery platforms need to make decisions on how to incorporate epidemic factors into their delivery strategies. In this paper, considering the factors of large activity range, long path, low efficiency and high risk of delivery staff in reservation-type fresh food delivery, combined with the perspective of delivery platform, a path planning model is constructed. we apply the ALNS algorithm to the proposed model and compares it with other classical heuristic algorithms. The results show that our proposed model can effectively reduce risks and improve delivery efficiency.