{"title":"Automatic vessel tree structure extraction by growing minimal paths and a mask","authors":"Da Chen, L. Cohen","doi":"10.1109/ISBI.2014.6867992","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a completely automatic method to extract the vessel tree structure including its centerlines and radius using geodesic paths technology. Our main goal is to find a set of key points located in the vessel centerlines, link each pair of key points by minimal paths for finding the vessels between them and stop this process automatically. This work adapts the growing minimal paths method to find the set of key points. The main drawback of growing minimal paths is when to stop the processing. To solve this problem we propose an automatic stopping criteria. Additionally, we use a cake wavelet to compute the vessel measurement consisting of both radius and orientation to develop the classical growing minimal paths model which cannot guarantee the extracted tree corresponds to the centerlines of the vessel tree.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, we propose a completely automatic method to extract the vessel tree structure including its centerlines and radius using geodesic paths technology. Our main goal is to find a set of key points located in the vessel centerlines, link each pair of key points by minimal paths for finding the vessels between them and stop this process automatically. This work adapts the growing minimal paths method to find the set of key points. The main drawback of growing minimal paths is when to stop the processing. To solve this problem we propose an automatic stopping criteria. Additionally, we use a cake wavelet to compute the vessel measurement consisting of both radius and orientation to develop the classical growing minimal paths model which cannot guarantee the extracted tree corresponds to the centerlines of the vessel tree.