Fault Diagnosis for Rotating Machinery Gearbox based on 1DCNN-RF

Zhimin Li, Qi Han, Rui Yang, Xianghua Wang, Mengjie Huang
{"title":"Fault Diagnosis for Rotating Machinery Gearbox based on 1DCNN-RF","authors":"Zhimin Li, Qi Han, Rui Yang, Xianghua Wang, Mengjie Huang","doi":"10.1109/ISCID51228.2020.00091","DOIUrl":null,"url":null,"abstract":"In this paper, a fault diagnosis method combining one-dimensional convolutional neural network (1DCNN) and random forest (RF), which is called 1DCNN-RF, is proposed for rotating machinery gearbox. This method uses 1DCNN to extract features from the collected multiple sensor signals, and then uses RF algorithm for classification. Compared to the existing approaches, this algorithm can improve the accuracy of fault diagnosis for rotating machinery gearbox. Finally, experiments are conducted on the Wind Turbine Drivetrain Diagnostic Simulator (WTDDS) to show the effectiveness of the proposed scheme.","PeriodicalId":236797,"journal":{"name":"2020 13th International Symposium on Computational Intelligence and Design (ISCID)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 13th International Symposium on Computational Intelligence and Design (ISCID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID51228.2020.00091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, a fault diagnosis method combining one-dimensional convolutional neural network (1DCNN) and random forest (RF), which is called 1DCNN-RF, is proposed for rotating machinery gearbox. This method uses 1DCNN to extract features from the collected multiple sensor signals, and then uses RF algorithm for classification. Compared to the existing approaches, this algorithm can improve the accuracy of fault diagnosis for rotating machinery gearbox. Finally, experiments are conducted on the Wind Turbine Drivetrain Diagnostic Simulator (WTDDS) to show the effectiveness of the proposed scheme.
基于1DCNN-RF的旋转机械齿轮箱故障诊断
本文提出了一种将一维卷积神经网络(1DCNN)与随机森林(RF)相结合的旋转机械齿轮箱故障诊断方法,称为1DCNN-RF。该方法使用1DCNN从采集到的多个传感器信号中提取特征,然后使用RF算法进行分类。与现有方法相比,该算法可以提高旋转机械齿轮箱故障诊断的准确性。最后,在风力机传动系统诊断模拟器(WTDDS)上进行了实验,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信