A Dataset for StarCraft AI and an Example of Armies Clustering

Gabriel Synnaeve, P. Bessière
{"title":"A Dataset for StarCraft AI and an Example of Armies Clustering","authors":"Gabriel Synnaeve, P. Bessière","doi":"10.1609/aiide.v8i3.12546","DOIUrl":null,"url":null,"abstract":"\n \n This paper advocates the exploration of the full state of recorded real-time strategy (RTS) games, by human or robotic players, to discover how to reason about tactics and strategy. We present a dataset of StarCraft games encompassing the most of the games' state (not only player’s orders). We explain one of the possible usages of this dataset by clustering armies on their compositions. This reduction of armies compositions to mixtures of Gaussian allow for strate- gic reasoning at the level of the components. We evaluated this clustering method by predicting the outcomes of battles based on armies compositions' mixtures components.\n \n","PeriodicalId":249108,"journal":{"name":"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aiide.v8i3.12546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper advocates the exploration of the full state of recorded real-time strategy (RTS) games, by human or robotic players, to discover how to reason about tactics and strategy. We present a dataset of StarCraft games encompassing the most of the games' state (not only player’s orders). We explain one of the possible usages of this dataset by clustering armies on their compositions. This reduction of armies compositions to mixtures of Gaussian allow for strate- gic reasoning at the level of the components. We evaluated this clustering method by predicting the outcomes of battles based on armies compositions' mixtures components.
《星际争霸》AI的数据集和军队集群的例子
本文提倡人类或机器人玩家探索实时战略(RTS)游戏的完整状态,以发现如何对战术和战略进行推理。我们呈现了一个《星际争霸》游戏的数据集,包含了大多数游戏的状态(不仅仅是玩家的命令)。我们通过对军队的组成进行聚类来解释该数据集的一种可能用法。这种将军队组成简化为高斯混合的方法允许在组成部分的水平上进行战略推理。我们通过基于军队组成的混合成分预测战斗结果来评估这种聚类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信