Xiaopeng Li, Fengyao Yan, F. Zuo, Qiang Zeng, Lannan Luo
{"title":"Touch Well Before Use: Intuitive and Secure Authentication for IoT Devices","authors":"Xiaopeng Li, Fengyao Yan, F. Zuo, Qiang Zeng, Lannan Luo","doi":"10.1145/3300061.3345434","DOIUrl":null,"url":null,"abstract":"Internet of Things (IoT) are densely deployed in smart environments, such as homes, factories and laboratories, where many people have physical access to IoT devices. How to authenticate users operating on these devices is thus an important problem. IoT devices usually lack conventional user interfaces, such as keyboards and mice, which makes traditional authentication methods inapplicable. We present a virtual sensing technique that allows IoT devices to virtually sense user 'petting' (in the form of some very simple touches for about 2 seconds) on the devices. Based on this technique, we build a secure and intuitive authentication method that authenticates device users by comparing the petting operations sensed by devices and those captured by the user wristband. The authentication method is highly secure as physical operations are required, rather than based on proximity. It is also intuitive, adopting very simple authentication operations, e.g., clicking buttons, twisting rotary knobs, and swiping touchscreens. Unlike the state-of-the-art methods, our method does not require any hardware modifications of devices, and thus can be applied to commercial off-the-shelf (COTS) devices. We build prototypes and evaluate them comprehensively, demonstrating their high effectiveness, security, usability, and efficiency.","PeriodicalId":223523,"journal":{"name":"The 25th Annual International Conference on Mobile Computing and Networking","volume":"325 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 25th Annual International Conference on Mobile Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3300061.3345434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35
Abstract
Internet of Things (IoT) are densely deployed in smart environments, such as homes, factories and laboratories, where many people have physical access to IoT devices. How to authenticate users operating on these devices is thus an important problem. IoT devices usually lack conventional user interfaces, such as keyboards and mice, which makes traditional authentication methods inapplicable. We present a virtual sensing technique that allows IoT devices to virtually sense user 'petting' (in the form of some very simple touches for about 2 seconds) on the devices. Based on this technique, we build a secure and intuitive authentication method that authenticates device users by comparing the petting operations sensed by devices and those captured by the user wristband. The authentication method is highly secure as physical operations are required, rather than based on proximity. It is also intuitive, adopting very simple authentication operations, e.g., clicking buttons, twisting rotary knobs, and swiping touchscreens. Unlike the state-of-the-art methods, our method does not require any hardware modifications of devices, and thus can be applied to commercial off-the-shelf (COTS) devices. We build prototypes and evaluate them comprehensively, demonstrating their high effectiveness, security, usability, and efficiency.