Automated cell nucleus detection for large-volume electron microscopy of neural tissue

F. Tek, Thorben Kröger, S. Mikula, F. Hamprecht
{"title":"Automated cell nucleus detection for large-volume electron microscopy of neural tissue","authors":"F. Tek, Thorben Kröger, S. Mikula, F. Hamprecht","doi":"10.1109/ISBI.2014.6867811","DOIUrl":null,"url":null,"abstract":"Volumetric electron microscopy techniques, such as serial block-face electron microscopy (SBEM), generate massive amounts of image data that are used for reconstructing neural circuits. Typically, this requires time-intensive manual annotation of cells and their connections. To facilitate this analysis, we study the problem of automated detection of cell nuclei in a new SBEM dataset that contains cerebral cortex, white matter, and striatum from an adult mouse brain. The dataset was manually annotated to identify the locations of all 3309 cell nuclei in the volume. We make both dataset and annotations available here. Using a hybrid approach that combines interactive learning, morphological processing, and object level feature classification, we demonstrate automated detection of cell nuclei at 92.4% recall and 95.1% precision. These algorithms are not RAM-limited and can scale to arbitrarily large datasets.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Volumetric electron microscopy techniques, such as serial block-face electron microscopy (SBEM), generate massive amounts of image data that are used for reconstructing neural circuits. Typically, this requires time-intensive manual annotation of cells and their connections. To facilitate this analysis, we study the problem of automated detection of cell nuclei in a new SBEM dataset that contains cerebral cortex, white matter, and striatum from an adult mouse brain. The dataset was manually annotated to identify the locations of all 3309 cell nuclei in the volume. We make both dataset and annotations available here. Using a hybrid approach that combines interactive learning, morphological processing, and object level feature classification, we demonstrate automated detection of cell nuclei at 92.4% recall and 95.1% precision. These algorithms are not RAM-limited and can scale to arbitrarily large datasets.
神经组织大体积电子显微镜下的自动细胞核检测
体积电子显微镜技术,如连续块面电子显微镜(SBEM),产生大量的图像数据,用于重建神经回路。通常,这需要耗费大量时间手工注释单元格及其连接。为了便于分析,我们研究了在一个新的SBEM数据集中自动检测细胞核的问题,该数据集包含来自成年小鼠大脑的大脑皮层、白质和纹状体。对数据集进行手动注释,以确定体积中所有3309个细胞核的位置。我们在这里同时提供数据集和注释。使用一种结合交互学习、形态处理和对象级特征分类的混合方法,我们展示了细胞核的自动检测,召回率为92.4%,准确率为95.1%。这些算法不受内存限制,可以扩展到任意大的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信