Zonotopic Extended Kalman Filter For RUL Forecasting With Unknown Degradation Behaviors

Ahmad Al-Mohamad, V. Puig, G. Hoblos
{"title":"Zonotopic Extended Kalman Filter For RUL Forecasting With Unknown Degradation Behaviors","authors":"Ahmad Al-Mohamad, V. Puig, G. Hoblos","doi":"10.1109/MED48518.2020.9182829","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel approach for Remaining Useful Life (RUL) forecasting using interval model-based prognostics techniques based on zonotopes without prior knowledge of the degradation behaviors of the system. Although Kalman filtering techniques have proved their estimation ability with Gaussian noises, an interval approach with zonotopic sets technique has been integrated for optimal estimation of parameters with unknown-but-bounded noises. Moreover, the proposed model-based prognostics technique has been applied to a DC-DC converter described as a nonlinear dynamical system affected by degradation behaviors. Thus, the estimated degraded parameters are adopted in the RUL prediction technique that propagates the zonotopic sets until the End-of-Life (EoL) of the system. In general, the technique is split into estimation and prediction phases using Zonotopic Extended Kalman Filter (ZEKF) to deal with the nonlinearities of the system and compute the optimal observer gain. A DC-DC converter case study in simulation is used to illustrate the utilized techniques and the simulation results prove the effectiveness.","PeriodicalId":418518,"journal":{"name":"2020 28th Mediterranean Conference on Control and Automation (MED)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED48518.2020.9182829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper proposes a novel approach for Remaining Useful Life (RUL) forecasting using interval model-based prognostics techniques based on zonotopes without prior knowledge of the degradation behaviors of the system. Although Kalman filtering techniques have proved their estimation ability with Gaussian noises, an interval approach with zonotopic sets technique has been integrated for optimal estimation of parameters with unknown-but-bounded noises. Moreover, the proposed model-based prognostics technique has been applied to a DC-DC converter described as a nonlinear dynamical system affected by degradation behaviors. Thus, the estimated degraded parameters are adopted in the RUL prediction technique that propagates the zonotopic sets until the End-of-Life (EoL) of the system. In general, the technique is split into estimation and prediction phases using Zonotopic Extended Kalman Filter (ZEKF) to deal with the nonlinearities of the system and compute the optimal observer gain. A DC-DC converter case study in simulation is used to illustrate the utilized techniques and the simulation results prove the effectiveness.
退化行为未知的RUL预测的分区扩展卡尔曼滤波
本文提出了一种新的剩余使用寿命(RUL)预测方法,该方法采用基于区间模型的预测技术,基于分区,无需预先了解系统的退化行为。虽然卡尔曼滤波技术已经证明了其对高斯噪声的估计能力,但在未知但有界噪声的情况下,将区间方法与分区集技术相结合,用于参数的最优估计。此外,所提出的基于模型的预测技术已应用于被描述为受退化行为影响的非线性动力系统的DC-DC变换器。因此,估计的退化参数被采用在RUL预测技术中,该技术传播分区集,直到系统的生命周期结束(EoL)。一般来说,该技术分为估计和预测两个阶段,使用分区扩展卡尔曼滤波器(ZEKF)来处理系统的非线性并计算最优观测器增益。以直流-直流变换器为例进行了仿真研究,仿真结果证明了所采用技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信