Dynamic zero-point attracting projection for time-varying sparse signal recovery

Jiawei Zhou, Laming Chen, Yuantao Gu
{"title":"Dynamic zero-point attracting projection for time-varying sparse signal recovery","authors":"Jiawei Zhou, Laming Chen, Yuantao Gu","doi":"10.1109/ICASSP.2015.7179020","DOIUrl":null,"url":null,"abstract":"Sparse signal recovery in the static case has been well studied under the framework of Compressive Sensing (CS), while in recent years more attention has also been paid to the dynamic case. In this paper, enlightened by the idea of modified-CS with partially known support, and based on a non-convex optimization approach, we propose the dynamic zero-point attracting projection (DZAP) algorithm to efficiently recover the slowly time-varying sparse signals. Benefiting from the temporal correlation within signal structures, plus an effective prediction method of the future signal based on previous recoveries incorporated, DZAP achieves high-precision recovery with less measurements or larger sparsity level, which is demonstrated by simulations on both synthetic and real data, accompanied by the comparison with other state-of-the-art reference algorithms.","PeriodicalId":117666,"journal":{"name":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2015.7179020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Sparse signal recovery in the static case has been well studied under the framework of Compressive Sensing (CS), while in recent years more attention has also been paid to the dynamic case. In this paper, enlightened by the idea of modified-CS with partially known support, and based on a non-convex optimization approach, we propose the dynamic zero-point attracting projection (DZAP) algorithm to efficiently recover the slowly time-varying sparse signals. Benefiting from the temporal correlation within signal structures, plus an effective prediction method of the future signal based on previous recoveries incorporated, DZAP achieves high-precision recovery with less measurements or larger sparsity level, which is demonstrated by simulations on both synthetic and real data, accompanied by the comparison with other state-of-the-art reference algorithms.
时变稀疏信号恢复的动态零点吸引投影
在压缩感知(CS)框架下,静态情况下的稀疏信号恢复已经得到了很好的研究,而近年来,动态情况下的稀疏信号恢复也受到了越来越多的关注。本文在部分已知支持度的改进cs思想的启发下,基于非凸优化方法,提出了动态零点吸引投影(DZAP)算法来有效地恢复慢时变稀疏信号。得益于信号结构内的时间相关性,再加上基于先前恢复的有效预测未来信号的方法,DZAP以更少的测量量或更大的稀疏度水平实现了高精度的恢复,这在合成和真实数据的模拟中得到了证明,并与其他最先进的参考算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信