A Population-Based Incremental Learning Method for Constrained Portfolio Optimisation

Yan Jin, R. Qu, J. Atkin
{"title":"A Population-Based Incremental Learning Method for Constrained Portfolio Optimisation","authors":"Yan Jin, R. Qu, J. Atkin","doi":"10.1109/SYNASC.2014.36","DOIUrl":null,"url":null,"abstract":"This paper investigates a hybrid algorithm which utilizes exact and heuristic methods to optimise asset selection and capital allocation in portfolio optimisation. The proposed method is composed of a customised population based incremental learning procedure and a mathematical programming application. It is based on the standard Markowitz model with additional practical constraints such as cardinality on the number of assets and quantity of the allocated capital. Computational experiments have been conducted and analysis has demonstrated the performance and effectiveness of the proposed approach.","PeriodicalId":150575,"journal":{"name":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2014.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper investigates a hybrid algorithm which utilizes exact and heuristic methods to optimise asset selection and capital allocation in portfolio optimisation. The proposed method is composed of a customised population based incremental learning procedure and a mathematical programming application. It is based on the standard Markowitz model with additional practical constraints such as cardinality on the number of assets and quantity of the allocated capital. Computational experiments have been conducted and analysis has demonstrated the performance and effectiveness of the proposed approach.
约束投资组合优化的基于群体的增量学习方法
本文研究了一种利用精确和启发式方法对投资组合优化中的资产选择和资本配置进行优化的混合算法。该方法由基于自定义种群的增量学习过程和数学规划应用程序组成。它基于标准的马科维茨模型,并带有额外的实际约束,如资产数量和分配资本数量的基数。计算实验和分析证明了该方法的性能和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信