Feature Extraction for Fault Diagnosis Based on Recursive Generalized Extended Least Squares Algorithm

N. A. Shashoa, A. Abougarair, Weiam Ali Saheri, Munya Ali Arwin
{"title":"Feature Extraction for Fault Diagnosis Based on Recursive Generalized Extended Least Squares Algorithm","authors":"N. A. Shashoa, A. Abougarair, Weiam Ali Saheri, Munya Ali Arwin","doi":"10.1109/IC_ASET58101.2023.10150709","DOIUrl":null,"url":null,"abstract":"this paper presents feature selection for fault diagnosis based on recursive generalized extended least squares algorithm (RGELS). RGELS model is derived and validation of this model is tested utilizing good statistical methods, which, namely best-fit criterion. The system parameters are estimated employing the proposed algorithm. Dimension reduction of the system parameters is done to get best important features using linear discriminant analysis. Finally, the simulation results confirm the effectiveness of the algorithm.","PeriodicalId":272261,"journal":{"name":"2023 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC_ASET58101.2023.10150709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

this paper presents feature selection for fault diagnosis based on recursive generalized extended least squares algorithm (RGELS). RGELS model is derived and validation of this model is tested utilizing good statistical methods, which, namely best-fit criterion. The system parameters are estimated employing the proposed algorithm. Dimension reduction of the system parameters is done to get best important features using linear discriminant analysis. Finally, the simulation results confirm the effectiveness of the algorithm.
基于递推广义扩展最小二乘算法的故障诊断特征提取
提出了一种基于递推广义扩展最小二乘算法的故障诊断特征选择方法。推导了RGELS模型,并利用良好的统计方法,即最佳拟合准则,检验了该模型的有效性。利用该算法对系统参数进行了估计。利用线性判别分析对系统参数进行降维,得到最优的重要特征。最后,仿真结果验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信