A spatial pyramidal decomposition method for finger vein recognition using local descriptors

Badreddine Griouz, R. Djemili, H. Bourouba, Hakim Doghmane
{"title":"A spatial pyramidal decomposition method for finger vein recognition using local descriptors","authors":"Badreddine Griouz, R. Djemili, H. Bourouba, Hakim Doghmane","doi":"10.1504/ijbm.2020.10026196","DOIUrl":null,"url":null,"abstract":"Finger vein patterns have been proved as one of the most promising biometric modality for its convenience and security. Most of the current available finger vein recognition methods utilise features from a segmented blood vessel network. This manner of processing however may not provide optimal recognition accuracies as reported in many studies. Therefore, this paper proposes in the feature extraction stage, the use of the spatial pyramid decomposition (SPD) method aiming at partitioning the finger vein images into increasingly fine subregions from which local texture descriptors are obtained. The descriptors adopted in this paper are local binary pattern (LPB), binarised statistical image feature (BSIF) and local phase quantisation (LPQ). The performance of the proposed approach evaluated on two publicly databases PolyU and SDUMLA achieves a recognition accuracy higher than that of some existing systems reported in the literature for both the SDUMLA and the PolyU databases.","PeriodicalId":262486,"journal":{"name":"Int. J. Biom.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Biom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijbm.2020.10026196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Finger vein patterns have been proved as one of the most promising biometric modality for its convenience and security. Most of the current available finger vein recognition methods utilise features from a segmented blood vessel network. This manner of processing however may not provide optimal recognition accuracies as reported in many studies. Therefore, this paper proposes in the feature extraction stage, the use of the spatial pyramid decomposition (SPD) method aiming at partitioning the finger vein images into increasingly fine subregions from which local texture descriptors are obtained. The descriptors adopted in this paper are local binary pattern (LPB), binarised statistical image feature (BSIF) and local phase quantisation (LPQ). The performance of the proposed approach evaluated on two publicly databases PolyU and SDUMLA achieves a recognition accuracy higher than that of some existing systems reported in the literature for both the SDUMLA and the PolyU databases.
基于局部描述符的空间锥体分解手指静脉识别方法
手指静脉以其便捷、安全的特点,已被证明是一种极具发展前景的生物识别方式。目前大多数可用的手指静脉识别方法都利用了血管网络的特征。然而,正如许多研究报告的那样,这种处理方式可能无法提供最佳的识别准确性。因此,本文提出在特征提取阶段,利用空间金字塔分解(SPD)方法,将手指静脉图像划分为越来越精细的子区域,从中获得局部纹理描述符。本文采用的描述符包括局部二值模式(LPB)、二值化统计图像特征(BSIF)和局部相位量化(LPQ)。在两个公开数据库(PolyU和SDUMLA)上对该方法的性能进行了评估,其识别准确率高于文献中报道的SDUMLA和理大数据库的现有系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信