M. Endo, Ryuji Nagaoka, Hiroki Nagaoka, T. Nagai, F. Wani
{"title":"Theoretical study of unstable resonators for diode-pumped alkali laser using wave optics simulation","authors":"M. Endo, Ryuji Nagaoka, Hiroki Nagaoka, T. Nagai, F. Wani","doi":"10.1117/12.2522115","DOIUrl":null,"url":null,"abstract":"Unstable optical resonators employing graded reflectivity mirrors (GRMs) for diode-pumped alkali laser (DPAL) are theoretically studied. In this study, a wave optics resonator model was coupled with a simplified gas flow model. The platform modeled was a 100-W class Cs DPAL proposed by us. As the pump beams are obliquely incident to the active medium, a wide gain region appears compared with that of the axially pumping scheme. Although an unstable resonator was expected to be suitable to provide a high-quality output beam, it was found to be inapplicable for our relatively small-scale DPAL apparatus. Instead, we demonstrated that the application of a GRM unstable resonator provide a nearly diffraction-limited beam (M2 < 2) with minimal penalty for the output power. The effect of the gas flow on the beam quality is also discussed.","PeriodicalId":375593,"journal":{"name":"Advanced High-Power Lasers and Applications","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced High-Power Lasers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2522115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Unstable optical resonators employing graded reflectivity mirrors (GRMs) for diode-pumped alkali laser (DPAL) are theoretically studied. In this study, a wave optics resonator model was coupled with a simplified gas flow model. The platform modeled was a 100-W class Cs DPAL proposed by us. As the pump beams are obliquely incident to the active medium, a wide gain region appears compared with that of the axially pumping scheme. Although an unstable resonator was expected to be suitable to provide a high-quality output beam, it was found to be inapplicable for our relatively small-scale DPAL apparatus. Instead, we demonstrated that the application of a GRM unstable resonator provide a nearly diffraction-limited beam (M2 < 2) with minimal penalty for the output power. The effect of the gas flow on the beam quality is also discussed.