{"title":"The Largest Stability Hypercube for Families of Polynomials with Linear Uncertainty","authors":"T. Djaferis","doi":"10.23919/ACC.1989.4790265","DOIUrl":null,"url":null,"abstract":"Let ¿(s) = ¿<inf>0</inf>(s) = ¿<inf>0</inf>(s) + a<inf>1</inf> ¿<inf>1</inf>(s) + a<inf>2</inf>¿<inf>2</inf>(s) +...+ a<inf>k</inf>¿<inf>k</inf>(s) be a polynomial with coefficients that depend linearly on real parameters a<inf>i</inf>, 1 ¿ i ¿ k. Let ¿<inf>0</inf>(s) be stable of degree n and ¿<inf>i</inf>, 1 ¿ i ¿ k, of degree less than n. Assume that the a<inf>i</inf> are allowed to take values in the k dimensional hypercube ¿<inf>¿a</inf> = {(a<inf>1</inf>,...,a<inf>k</inf>)¿R<sup>k</sup>: a<sup>-</sup><inf>i</inf> ¿ a<inf>i</inf> ¿ ¿ a<sup>+</sup><inf>i</inf>}, where a<sup>-1</sup><inf>i</inf> ≪ 0, a<sup>+</sup><inf>i</inf> ≫ 0, 1 ¿ i ¿ k are fixed and ¿ ¿ 0. In this paper we consider the problem of how to compute the largest value ¿* such that the family is stable in ¿<inf>¿a</inf> for 0 ¿ ¿ ≪ ¿*. Considering the problem in the frequency domain, a function of frequency can be constructed whose infimum is ¿*. In this paper we show that to compute ¿* one need only consider the values of this function at a finite number of frequencies. The number of frequencies is polynomial in k, and the frequencies themselves are explicitly determined from the given data.","PeriodicalId":383719,"journal":{"name":"1989 American Control Conference","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1989 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.1989.4790265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Let ¿(s) = ¿0(s) = ¿0(s) + a1 ¿1(s) + a2¿2(s) +...+ ak¿k(s) be a polynomial with coefficients that depend linearly on real parameters ai, 1 ¿ i ¿ k. Let ¿0(s) be stable of degree n and ¿i, 1 ¿ i ¿ k, of degree less than n. Assume that the ai are allowed to take values in the k dimensional hypercube ¿¿a = {(a1,...,ak)¿Rk: a-i ¿ ai ¿ ¿ a+i}, where a-1i ≪ 0, a+i ≫ 0, 1 ¿ i ¿ k are fixed and ¿ ¿ 0. In this paper we consider the problem of how to compute the largest value ¿* such that the family is stable in ¿¿a for 0 ¿ ¿ ≪ ¿*. Considering the problem in the frequency domain, a function of frequency can be constructed whose infimum is ¿*. In this paper we show that to compute ¿* one need only consider the values of this function at a finite number of frequencies. The number of frequencies is polynomial in k, and the frequencies themselves are explicitly determined from the given data.