The Largest Stability Hypercube for Families of Polynomials with Linear Uncertainty

T. Djaferis
{"title":"The Largest Stability Hypercube for Families of Polynomials with Linear Uncertainty","authors":"T. Djaferis","doi":"10.23919/ACC.1989.4790265","DOIUrl":null,"url":null,"abstract":"Let ¿(s) = ¿<inf>0</inf>(s) = ¿<inf>0</inf>(s) + a<inf>1</inf> ¿<inf>1</inf>(s) + a<inf>2</inf>¿<inf>2</inf>(s) +...+ a<inf>k</inf>¿<inf>k</inf>(s) be a polynomial with coefficients that depend linearly on real parameters a<inf>i</inf>, 1 ¿ i ¿ k. Let ¿<inf>0</inf>(s) be stable of degree n and ¿<inf>i</inf>, 1 ¿ i ¿ k, of degree less than n. Assume that the a<inf>i</inf> are allowed to take values in the k dimensional hypercube ¿<inf>¿a</inf> = {(a<inf>1</inf>,...,a<inf>k</inf>)¿R<sup>k</sup>: a<sup>-</sup><inf>i</inf> ¿ a<inf>i</inf> ¿ ¿ a<sup>+</sup><inf>i</inf>}, where a<sup>-1</sup><inf>i</inf> ≪ 0, a<sup>+</sup><inf>i</inf> ≫ 0, 1 ¿ i ¿ k are fixed and ¿ ¿ 0. In this paper we consider the problem of how to compute the largest value ¿* such that the family is stable in ¿<inf>¿a</inf> for 0 ¿ ¿ ≪ ¿*. Considering the problem in the frequency domain, a function of frequency can be constructed whose infimum is ¿*. In this paper we show that to compute ¿* one need only consider the values of this function at a finite number of frequencies. The number of frequencies is polynomial in k, and the frequencies themselves are explicitly determined from the given data.","PeriodicalId":383719,"journal":{"name":"1989 American Control Conference","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1989 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.1989.4790265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Let ¿(s) = ¿0(s) = ¿0(s) + a1 ¿1(s) + a2¿2(s) +...+ ak¿k(s) be a polynomial with coefficients that depend linearly on real parameters ai, 1 ¿ i ¿ k. Let ¿0(s) be stable of degree n and ¿i, 1 ¿ i ¿ k, of degree less than n. Assume that the ai are allowed to take values in the k dimensional hypercube ¿¿a = {(a1,...,ak)¿Rk: a-i ¿ ai ¿ ¿ a+i}, where a-1i ≪ 0, a+i ≫ 0, 1 ¿ i ¿ k are fixed and ¿ ¿ 0. In this paper we consider the problem of how to compute the largest value ¿* such that the family is stable in ¿¿a for 0 ¿ ¿ ≪ ¿*. Considering the problem in the frequency domain, a function of frequency can be constructed whose infimum is ¿*. In this paper we show that to compute ¿* one need only consider the values of this function at a finite number of frequencies. The number of frequencies is polynomial in k, and the frequencies themselves are explicitly determined from the given data.
线性不确定多项式族的最大稳定性超立方
让他们害怕(s) = 0 (s)害怕= 0 (s) +害怕害怕a1 - 1 (s) + a2 2 (s) +…+害怕ak k (s)是一个多项式的系数线性依赖于实际参数ai, 1他们害怕我害怕k。0 (s)是稳定程度的n和害怕,我害怕我害怕k,程度小于n。假设允许人工智能在k值维超立方体害怕害怕a = {(a1,…,ak)害怕Rk:我害怕我害怕害怕ai +},在a-1i≪0,+我≫0,1害怕我害怕害怕害怕k是固定和0。在本文中,我们考虑了如何计算最大值的问题,使该族在0¿¿≪¿*时稳定。考虑到频域问题,可以构造一个频率函数,其最小值为¿*。在本文中,我们证明了计算¿*只需要考虑这个函数在有限个频率下的值。频率的数量是k的多项式,频率本身是根据给定的数据显式确定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信