An Integrated Approach Using Automatic Seed Generation and Hybrid Classification for the Detection of Red Lesions in Digital Fundus Images

S. Pradhan, S. Balasubramanian, V. Chandrasekaran
{"title":"An Integrated Approach Using Automatic Seed Generation and Hybrid Classification for the Detection of Red Lesions in Digital Fundus Images","authors":"S. Pradhan, S. Balasubramanian, V. Chandrasekaran","doi":"10.1109/CIT.2008.WORKSHOPS.35","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel method for automatic detection of microaneurysms (MA) and hemorrhages (HG)grouped as red lesions. Candidate extraction is achieved by automatic seed generation (ASG) which is devoid of morphological top hat transform (MTH). For classification we tested on linear discriminant classifier (LMSE), kNN, GMM, SVM and proposed a Hybrid classifier that incorporates kNN and GMM using 'max' rule. Inclusion of a new feature called elliptic variance during classification phase has significantly reduced the false positives. An integrated approach using ASG and the hybrid classifier reports the best sensitivity of 87% with 95.53% specificity.","PeriodicalId":155998,"journal":{"name":"2008 IEEE 8th International Conference on Computer and Information Technology Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 8th International Conference on Computer and Information Technology Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIT.2008.WORKSHOPS.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

In this paper we propose a novel method for automatic detection of microaneurysms (MA) and hemorrhages (HG)grouped as red lesions. Candidate extraction is achieved by automatic seed generation (ASG) which is devoid of morphological top hat transform (MTH). For classification we tested on linear discriminant classifier (LMSE), kNN, GMM, SVM and proposed a Hybrid classifier that incorporates kNN and GMM using 'max' rule. Inclusion of a new feature called elliptic variance during classification phase has significantly reduced the false positives. An integrated approach using ASG and the hybrid classifier reports the best sensitivity of 87% with 95.53% specificity.
基于自动种子生成和混合分类的眼底图像红色病灶检测方法
在本文中,我们提出了一种新的方法来自动检测微动脉瘤(MA)和出血(HG)分组为红色病变。候选对象的提取是通过自动种子生成(ASG)实现的,该方法不需要形态学顶帽变换(MTH)。对于分类,我们对线性判别分类器(LMSE)、kNN、GMM、SVM进行了测试,并提出了一种结合kNN和GMM的混合分类器,使用“max”规则。在分类阶段包含一个新的特征称为椭圆方差显著减少了误报。综合使用ASG和混合分类器的方法报告最佳灵敏度为87%,特异性为95.53%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信