Categorical classifiers in multiclass classification with imbalanced datasets

M. Carpita, Silvia Golia
{"title":"Categorical classifiers in multiclass classification with imbalanced datasets","authors":"M. Carpita, Silvia Golia","doi":"10.1002/sam.11624","DOIUrl":null,"url":null,"abstract":"This paper discusses, in a multiclass classification setting, the issue of the choice of the so‐called categorical classifier, which is the procedure or criterion that transforms the probabilities produced by a probabilistic classifier into a single category or class. The standard choice is the Bayes Classifier (BC), but it has some limits with rare classes. This paper studies the classification performance of the BC versus two alternatives, that are the Max Difference Classifier (MDC) and Max Ratio Classifier (MRC), through an extensive simulation and some case studies. The results show that both MDC and MRC are preferable to BC in a multiclass setting with imbalanced data.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper discusses, in a multiclass classification setting, the issue of the choice of the so‐called categorical classifier, which is the procedure or criterion that transforms the probabilities produced by a probabilistic classifier into a single category or class. The standard choice is the Bayes Classifier (BC), but it has some limits with rare classes. This paper studies the classification performance of the BC versus two alternatives, that are the Max Difference Classifier (MDC) and Max Ratio Classifier (MRC), through an extensive simulation and some case studies. The results show that both MDC and MRC are preferable to BC in a multiclass setting with imbalanced data.
不平衡数据集下多类分类的分类器
本文讨论了在多类分类设置中,选择所谓的分类器的问题,分类器是将概率分类器产生的概率转换为单个类别或类的过程或标准。标准的选择是贝叶斯分类器(BC),但它对罕见的类有一些限制。本文通过广泛的仿真和一些案例研究,研究了BC与最大差分分类器(MDC)和最大比率分类器(MRC)的分类性能。结果表明,在数据不平衡的多类环境下,MDC和MRC都优于BC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信