Remarks and conjectures regarding combinatorics of discrete partial functions

M. Azarian
{"title":"Remarks and conjectures regarding combinatorics of discrete partial functions","authors":"M. Azarian","doi":"10.12988/imf.2022.912321","DOIUrl":null,"url":null,"abstract":"We discuss combinatorics of discrete relations, (total) functions, and partial functions. For two sets A and B , we present formulas for the calculations of the number of relations from A to B that are not: (i) functions, (ii) one-to-one functions, or (iii) onto functions. W e provide formulas to calculate the number of functions from A to B that are not: (i) one-to-one or (ii) onto. Also, we determine the number of partial and proper partial functions from A to B . Moreover, we state some conjectures and pose questions for the reader. This paper generates numerous integer sequences, some of which can be found in The On-Line Encyclopedia of Integer Sequences (OEIS) .","PeriodicalId":107214,"journal":{"name":"International Mathematical Forum","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematical Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/imf.2022.912321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We discuss combinatorics of discrete relations, (total) functions, and partial functions. For two sets A and B , we present formulas for the calculations of the number of relations from A to B that are not: (i) functions, (ii) one-to-one functions, or (iii) onto functions. W e provide formulas to calculate the number of functions from A to B that are not: (i) one-to-one or (ii) onto. Also, we determine the number of partial and proper partial functions from A to B . Moreover, we state some conjectures and pose questions for the reader. This paper generates numerous integer sequences, some of which can be found in The On-Line Encyclopedia of Integer Sequences (OEIS) .
关于离散偏函数组合的注释和猜想
我们讨论了离散关系、(全)函数和偏函数的组合。对于两个集合A和B,我们给出了计算从A到B的非(i)函数,(ii)一对一函数,或(iii)上函数的关系数目的公式。我们提供公式来计算从A到B不是(i)一对一或(ii)映上的函数的数目。同时,我们确定了从A到B的偏函数和固有偏函数的个数。此外,我们提出了一些猜想,并向读者提出了一些问题。本文生成了大量的整数序列,其中一些可以在整数序列在线百科全书(OEIS)中找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信