{"title":"Getting Your Conversation on Track: Estimation of Residual Life for Conversations","authors":"Zexin Lu, Jing Li, Yingyi Zhang, Haisong Zhang","doi":"10.1109/SLT48900.2021.9383544","DOIUrl":null,"url":null,"abstract":"This paper presents a predictive study on the progress of conversations. Specifically, we estimate the residual life for conversations, which is defined as the count of new turns to occur in a conversation thread. While most previous work focus on coarse-grained estimation that classifies the number of coming turns into two categories, we study fine-grained categorization for varying lengths of residual life. To this end, we propose a hierarchical neural model that jointly explores indicative representations from the content in turns and the structure of conversations in an end-to-end manner. Extensive experiments on both human-human and human-machine conversations demonstrate the superiority of our proposed model and its potential helpfulness in chatbot response selection.","PeriodicalId":243211,"journal":{"name":"2021 IEEE Spoken Language Technology Workshop (SLT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT48900.2021.9383544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a predictive study on the progress of conversations. Specifically, we estimate the residual life for conversations, which is defined as the count of new turns to occur in a conversation thread. While most previous work focus on coarse-grained estimation that classifies the number of coming turns into two categories, we study fine-grained categorization for varying lengths of residual life. To this end, we propose a hierarchical neural model that jointly explores indicative representations from the content in turns and the structure of conversations in an end-to-end manner. Extensive experiments on both human-human and human-machine conversations demonstrate the superiority of our proposed model and its potential helpfulness in chatbot response selection.