Named entity recognition based on a Hidden Markov Model in part-of-speech tagging

R. Ageishi, T. Miura
{"title":"Named entity recognition based on a Hidden Markov Model in part-of-speech tagging","authors":"R. Ageishi, T. Miura","doi":"10.1109/ICADIWT.2008.4664380","DOIUrl":null,"url":null,"abstract":"In this investigation, we propose how to combine stochastis process with rule-based techniques to recognize named entity in morphological analysis. We discuss Hidden Markov Model (HMM) for tagging English texts tentatively and we focus our attention on named entity recognition. We discuss rule-based approach over n consecutive words for rule extraction and show the usefulness of our approach by some experimental results.","PeriodicalId":189871,"journal":{"name":"2008 First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICADIWT.2008.4664380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this investigation, we propose how to combine stochastis process with rule-based techniques to recognize named entity in morphological analysis. We discuss Hidden Markov Model (HMM) for tagging English texts tentatively and we focus our attention on named entity recognition. We discuss rule-based approach over n consecutive words for rule extraction and show the usefulness of our approach by some experimental results.
词性标注中基于隐马尔可夫模型的命名实体识别
在本研究中,我们提出了如何将随机过程与基于规则的技术相结合来识别形态分析中的命名实体。本文初步探讨了隐马尔可夫模型(HMM)在英语文本标注中的应用,并将重点放在命名实体识别上。我们讨论了基于规则的n个连续词的规则提取方法,并通过一些实验结果证明了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信