A Study of Category Expansion for Related Entity Finding

Junsan Zhang, Y. Qu
{"title":"A Study of Category Expansion for Related Entity Finding","authors":"Junsan Zhang, Y. Qu","doi":"10.1109/ISCID.2011.55","DOIUrl":null,"url":null,"abstract":"Entity is an important information carrier in Web pages. Searchers often want a ranked list of relevant entities directly rather a list of documents. So the research of related entity finding (REF) is very meaningful. In this paper we investigate the most important task of REF: Entity Ranking. To address the issue of wrong entity type in entity ranking: some retrieved entities don't belong to the target entity type. We make use of category expansion to deal with the issue of wrong entity type polluting entity ranking. We use Wikipedia and Dbpedia as data sources in the experiment. We found category expansion based on original type achieves a better result in recall and precision proved by experiment.","PeriodicalId":224504,"journal":{"name":"2011 Fourth International Symposium on Computational Intelligence and Design","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2011.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Entity is an important information carrier in Web pages. Searchers often want a ranked list of relevant entities directly rather a list of documents. So the research of related entity finding (REF) is very meaningful. In this paper we investigate the most important task of REF: Entity Ranking. To address the issue of wrong entity type in entity ranking: some retrieved entities don't belong to the target entity type. We make use of category expansion to deal with the issue of wrong entity type polluting entity ranking. We use Wikipedia and Dbpedia as data sources in the experiment. We found category expansion based on original type achieves a better result in recall and precision proved by experiment.
相关实体查找的类别扩展研究
实体是网页中重要的信息载体。搜索者通常想要一个相关实体的直接排序列表,而不是一个文档列表。因此,相关实体发现(REF)的研究具有十分重要的意义。本文主要研究REF:实体排序中最重要的任务。为了解决实体排序中实体类型错误的问题:一些检索到的实体不属于目标实体类型。我们利用类别扩展来解决实体类型错误的污染实体排序问题。我们在实验中使用Wikipedia和Dbpedia作为数据源。实验证明,基于原始类型的类别扩展在查全率和查准率方面取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信