Boosted Decision Trees

Y. Coadou
{"title":"Boosted Decision Trees","authors":"Y. Coadou","doi":"10.1142/9789811234033_0002","DOIUrl":null,"url":null,"abstract":"Boosted decision trees are a very powerful machine learning technique. After introducing specific concepts of machine learning in the high-energy physics context and describing ways to quantify the performance and training quality of classifiers, decision trees are described. Some of their shortcomings are then mitigated with ensemble learning, using boosting algorithms, in particular AdaBoost and gradient boosting. Examples from high-energy physics and software used are also presented.","PeriodicalId":416365,"journal":{"name":"Artificial Intelligence for High Energy Physics","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence for High Energy Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811234033_0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Boosted decision trees are a very powerful machine learning technique. After introducing specific concepts of machine learning in the high-energy physics context and describing ways to quantify the performance and training quality of classifiers, decision trees are described. Some of their shortcomings are then mitigated with ensemble learning, using boosting algorithms, in particular AdaBoost and gradient boosting. Examples from high-energy physics and software used are also presented.
增强决策树
增强决策树是一种非常强大的机器学习技术。在介绍了高能物理背景下机器学习的具体概念并描述了量化分类器的性能和训练质量的方法之后,描述了决策树。它们的一些缺点可以通过集成学习来缓解,使用增强算法,特别是AdaBoost和梯度增强。本文还介绍了高能物理的实例和所使用的软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信