Digital watermarking and segmentation of macroscopic pigmented skin lesions images

I. Pirnog, R. Preda, C. Oprea, R. Dobre
{"title":"Digital watermarking and segmentation of macroscopic pigmented skin lesions images","authors":"I. Pirnog, R. Preda, C. Oprea, R. Dobre","doi":"10.1109/ISSCS.2017.8034904","DOIUrl":null,"url":null,"abstract":"This work presents the use of digital watermarking for applications of automated pigmented skin lesions assessment. Automated skin lesion assessment by digital image processing of macroscopic pigmented skin lesion (MPLS) images uses lesion characteristics for malignant risk computation. The accuracy of the computed risk level is increased when additional information is taken into consideration: age, gender, skin type, position of the lesions on body, and the presence of multiple and similar lesions. We propose a digital watermarking scheme for embedding relevant patient information into the color MPSL image. The preliminary experimental results are promising, and suggest that the proposed watermarking scheme is suitable for this type of application.","PeriodicalId":338255,"journal":{"name":"2017 International Symposium on Signals, Circuits and Systems (ISSCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Signals, Circuits and Systems (ISSCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCS.2017.8034904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents the use of digital watermarking for applications of automated pigmented skin lesions assessment. Automated skin lesion assessment by digital image processing of macroscopic pigmented skin lesion (MPLS) images uses lesion characteristics for malignant risk computation. The accuracy of the computed risk level is increased when additional information is taken into consideration: age, gender, skin type, position of the lesions on body, and the presence of multiple and similar lesions. We propose a digital watermarking scheme for embedding relevant patient information into the color MPSL image. The preliminary experimental results are promising, and suggest that the proposed watermarking scheme is suitable for this type of application.
宏观皮肤色素病变图像的数字水印与分割
这项工作提出了使用数字水印的应用自动色素皮肤病变评估。对宏观色素性皮肤病变(MPLS)图像进行数字图像处理,利用病变特征进行恶性风险计算。当考虑到其他信息时,计算风险水平的准确性得到提高:年龄、性别、皮肤类型、病变在身体上的位置,以及多个和类似病变的存在。提出了一种将患者相关信息嵌入彩色MPSL图像的数字水印方案。初步实验结果表明,所提出的水印方案适用于此类应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信