Separability and Nonseparability of Elastic States in Arrays of One-Dimensional Elastic Waveguides

P. Deymier, J. Vasseur, K. Runge, P. Lucas
{"title":"Separability and Nonseparability of Elastic States in Arrays of One-Dimensional Elastic Waveguides","authors":"P. Deymier, J. Vasseur, K. Runge, P. Lucas","doi":"10.5772/INTECHOPEN.77237","DOIUrl":null,"url":null,"abstract":"We show that the directional projection of longitudinal waves propagating in a parallel array of N elastically coupled waveguides can be described by a nonlinear Dirac-like equation in a 2 N dimensional exponential space. This space spans the tensor product Hilbert space of the two-dimensional subspaces of N uncoupled waveguides grounded elastically to a rigid substrate (called φ -bits). The superposition of directional states of a φ -bit is analogous to that of a quantum spin. We can construct tensor product states of the elastically coupled system that are nonseparable on the basis of tensor product states of N φ -bits. We propose a system of coupled waveguides in a ring configuration that supports these nonseparable states.","PeriodicalId":297371,"journal":{"name":"Phonons in Low Dimensional Structures","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phonons in Low Dimensional Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.77237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We show that the directional projection of longitudinal waves propagating in a parallel array of N elastically coupled waveguides can be described by a nonlinear Dirac-like equation in a 2 N dimensional exponential space. This space spans the tensor product Hilbert space of the two-dimensional subspaces of N uncoupled waveguides grounded elastically to a rigid substrate (called φ -bits). The superposition of directional states of a φ -bit is analogous to that of a quantum spin. We can construct tensor product states of the elastically coupled system that are nonseparable on the basis of tensor product states of N φ -bits. We propose a system of coupled waveguides in a ring configuration that supports these nonseparable states.
一维弹性波导阵列中弹性态的可分性和不可分性
我们证明了纵波在N个弹性耦合波导的平行阵列中传播的方向投影可以用一个非线性的类狄拉克方程在2n维指数空间中描述。这个空间跨越了N个不耦合波导的二维子空间的张量积希尔伯特空间,这些子空间弹性地接地在刚性衬底上(称为φ -bits)。φ -bit方向态的叠加类似于量子自旋的叠加。我们可以在N φ位张量积态的基础上构造不可分弹性耦合系统的张量积态。我们提出了一个支持这些不可分离状态的环形耦合波导系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信