Aesthetic Evaluation of Food Plate Images using Deep Learning

Veranika Mikhailava, Evgeny Pyshkin, V. Klyuev
{"title":"Aesthetic Evaluation of Food Plate Images using Deep Learning","authors":"Veranika Mikhailava, Evgeny Pyshkin, V. Klyuev","doi":"10.23919/ICACT48636.2020.9061216","DOIUrl":null,"url":null,"abstract":"This paper contributes to the experiments on using machine learning algorithms for image aesthetic evaluation, with particular focus on food plate image evaluation. Such an evaluation may be beneficial for professional and amateur cuisine makers, restaurant critiques, photographers, and travelers. We use a convolutional neural network at the training and recognition stages. The proof-of-concept experiments are arranged using our marked dataset of food plate images. Earth Mover's Distance algorithm is used for process validation. The analysis of results shows that the trained system predicts food image aesthetic value conforming to the collected human expert evaluations with good quality.","PeriodicalId":296763,"journal":{"name":"2020 22nd International Conference on Advanced Communication Technology (ICACT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 22nd International Conference on Advanced Communication Technology (ICACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICACT48636.2020.9061216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper contributes to the experiments on using machine learning algorithms for image aesthetic evaluation, with particular focus on food plate image evaluation. Such an evaluation may be beneficial for professional and amateur cuisine makers, restaurant critiques, photographers, and travelers. We use a convolutional neural network at the training and recognition stages. The proof-of-concept experiments are arranged using our marked dataset of food plate images. Earth Mover's Distance algorithm is used for process validation. The analysis of results shows that the trained system predicts food image aesthetic value conforming to the collected human expert evaluations with good quality.
利用深度学习对餐盘图像进行美学评价
本文对使用机器学习算法进行图像美学评价的实验做出了贡献,特别是对食物盘子图像的评价。这样的评价对专业和业余的烹饪师、餐馆评论家、摄影师和旅行者都是有益的。我们在训练和识别阶段使用卷积神经网络。概念验证实验使用我们标记的餐盘图像数据集进行安排。earthmover的距离算法用于工艺验证。结果分析表明,所训练的系统预测食品图像的审美价值与收集到的人类专家评价相符合,质量较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信