{"title":"Flaticulation: Laser Cutting Joints with Articulated Angles","authors":"Chiao Fang, V. H. Chan, Lung-Pan Cheng","doi":"10.1145/3526113.3545695","DOIUrl":null,"url":null,"abstract":"We present Flaticulation, a method to laser cut joints that clutch two cut-in-place flat boards at designated articulated angles. We discover special T-patterns added on the shared edge of two pieces allowing them to be clutched at a bending angle. We analyze the structure and propose a parametric model regarding the T-pattern under laser cutting to predict the joint articulated angle. We validate our proposed model by measuring real prototypes and conducting stress-strain analysis to understand their structural strength. Finally, we provide a user interface for our example applications, including fast assembling unfolded 3D polygonal models and adding detent mechanisms for functional objects such as a mouse and reconfigurable objects such as a headphone.","PeriodicalId":200048,"journal":{"name":"Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526113.3545695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We present Flaticulation, a method to laser cut joints that clutch two cut-in-place flat boards at designated articulated angles. We discover special T-patterns added on the shared edge of two pieces allowing them to be clutched at a bending angle. We analyze the structure and propose a parametric model regarding the T-pattern under laser cutting to predict the joint articulated angle. We validate our proposed model by measuring real prototypes and conducting stress-strain analysis to understand their structural strength. Finally, we provide a user interface for our example applications, including fast assembling unfolded 3D polygonal models and adding detent mechanisms for functional objects such as a mouse and reconfigurable objects such as a headphone.