Outliers Elimination Based Ransac for Fundamental Matrix Estimation

Shuqiang Yang, Biao Li
{"title":"Outliers Elimination Based Ransac for Fundamental Matrix Estimation","authors":"Shuqiang Yang, Biao Li","doi":"10.1109/ICVRV.2013.63","DOIUrl":null,"url":null,"abstract":"To accelerate the RANSAC process for fundamental matrix estimation, two special modifications about RANSAC are proposed. Firstly, in the verification stage, not the correspondences are used to verify the hypothesis but the singular values of estimated fundamental matrix are directly used to evaluate the effectiveness of the matrix. Secondly, after getting a plausible estimation, the obvious outliers are eliminated from the correspondences set. This process can enhance the inliers' ratio in the remaining correspondences set, which will accelerate the sample progress. We call our method as outlier elimination based RANSAC (OE-RANSAC). Experimental results both from synthetic and real data have testified the efficiency of OE-RANSAC.","PeriodicalId":179465,"journal":{"name":"2013 International Conference on Virtual Reality and Visualization","volume":"06 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Virtual Reality and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRV.2013.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

To accelerate the RANSAC process for fundamental matrix estimation, two special modifications about RANSAC are proposed. Firstly, in the verification stage, not the correspondences are used to verify the hypothesis but the singular values of estimated fundamental matrix are directly used to evaluate the effectiveness of the matrix. Secondly, after getting a plausible estimation, the obvious outliers are eliminated from the correspondences set. This process can enhance the inliers' ratio in the remaining correspondences set, which will accelerate the sample progress. We call our method as outlier elimination based RANSAC (OE-RANSAC). Experimental results both from synthetic and real data have testified the efficiency of OE-RANSAC.
基于离群值消除的Ransac基本矩阵估计
为了加快基本矩阵估计的RANSAC过程,提出了对RANSAC的两个特殊修正。首先,在验证阶段,不使用对应关系来验证假设,而是直接使用估计的基本矩阵的奇异值来评估矩阵的有效性。其次,在得到似是而非的估计后,从对应集中剔除明显的异常值。这个过程可以提高内层在剩余对应集中的比例,从而加快样本的进度。我们将这种方法称为基于离群值消除的RANSAC (OE-RANSAC)。合成数据和实际数据的实验结果都证明了OE-RANSAC的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信