A General Data Renewal Model for Prediction Algorithms in Industrial Data Analytics

Hongzhi Wang, Yijie Yang, Yang Song
{"title":"A General Data Renewal Model for Prediction Algorithms in Industrial Data Analytics","authors":"Hongzhi Wang, Yijie Yang, Yang Song","doi":"10.1109/ICPDS47662.2019.9017196","DOIUrl":null,"url":null,"abstract":"In industrial data analytics, one of the fundamental problems is to utilize the temporal correlation of the industrial data to make timely predictions in the production process, such as fault prediction and yield prediction. However, the traditional prediction models are fixed while the conditions of the machines have changed over time, thus making the errors of predictions increase with the lapse of time. In this paper, we propose a general data renewal model to deal with it. Combined with the similarity function and the loss function, the data renewal model estimates the time of updating the existing prediction model, and then updates it according to the evaluation function iteratively and adaptively. We have applied the data renewal model to two prediction algorithms. The experiments demonstrate that the data renewal model can effectively identify the changes of data, update and optimize the prediction model so as to improve the accuracy of prediction.","PeriodicalId":130202,"journal":{"name":"2019 IEEE International Conference on Power Data Science (ICPDS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Power Data Science (ICPDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPDS47662.2019.9017196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In industrial data analytics, one of the fundamental problems is to utilize the temporal correlation of the industrial data to make timely predictions in the production process, such as fault prediction and yield prediction. However, the traditional prediction models are fixed while the conditions of the machines have changed over time, thus making the errors of predictions increase with the lapse of time. In this paper, we propose a general data renewal model to deal with it. Combined with the similarity function and the loss function, the data renewal model estimates the time of updating the existing prediction model, and then updates it according to the evaluation function iteratively and adaptively. We have applied the data renewal model to two prediction algorithms. The experiments demonstrate that the data renewal model can effectively identify the changes of data, update and optimize the prediction model so as to improve the accuracy of prediction.
工业数据分析中预测算法的通用数据更新模型
在工业数据分析中,利用工业数据的时间相关性对生产过程进行及时预测是一个基本问题,如故障预测、产量预测等。然而,传统的预测模型是固定的,而机器的条件会随着时间的推移而变化,因此预测的误差会随着时间的推移而增加。本文提出了一种通用的数据更新模型来解决这一问题。数据更新模型结合相似度函数和损失函数,估计现有预测模型的更新时间,然后根据评估函数进行迭代自适应更新。我们将数据更新模型应用于两种预测算法。实验表明,该数据更新模型能够有效识别数据的变化,对预测模型进行更新和优化,从而提高预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信