Tika Indah Pratiwi, Barry Ceasar Octariadi, S.Kom.,M.Cs, Yulrio Brianorman,S.Si.,M.T
{"title":"Sistem Informasi Peramalan Persediaan Roti Menggunakan Metode Single Exponential Smoothing Pada Pabrik Teguh Karya Bakery","authors":"Tika Indah Pratiwi, Barry Ceasar Octariadi, S.Kom.,M.Cs, Yulrio Brianorman,S.Si.,M.T","doi":"10.29406/diligent.v2i2.3286","DOIUrl":null,"url":null,"abstract":"produksi masih menggunakan metode perhitungan berdasarkan hasil produksi yang terkadang jumlahnya sangat berlebih dan kurang. Penelitian ini bertujuan untuk mengoptimalkan jumlah produksi roti maka dibutuhkan sistem informasi peramalan persediaan roti menggunakan metode Single Exponential Smoothing. Peramalan persediaan produksi roti dilakukan dengan pengujian tingkat keakuratan hasil peramalan. Tingkat keakuratan dihasilkan dari nilai MAPE disetiap perhitungan, semakin kecil nilai MAPE maka tingkat Abstract When determining the amount of production or inventory of each type of bread, production managers still use the calculation method based on their own estimates, causing production results which are sometimes excessive and Less. This research aims to optimize the amount of bread production, which takes information system forecasting bread supplies using the Single Exponential Smoothing method. Forecasting of bread production supply by testing the accuracy of the forecasting results. The accuracy level is generated from the MAPE value in each calculation, the smaller the MAPE value, the more precise the accuracy level. Testing was conducted with forecasting results using alphas that differ from 0.1 – 0.9. After testing obtained the best mape results for each type of bread, for the best alpha burger bread is alpha 0.4 with a forecast value of 670 pieces of bread, for the best alpha bread is 0.2 with a forecasting number of 234 pieces of bread, for the best alpha chocolate pia bread is 0.5 with a forecasting number of 1783 pieces of bread, for the best alpha green bean pia bread 0.6 with a forecasting number of 1480 pieces of bread for the best alpha chocolate sandwich 0.6 with a forecasting number of 1788 pieces of bread for the best alpha srikaya sandwich is 0.9 with a forecast number of 1764 pieces of bread and for the average accuracy of all types of bread is 94%.","PeriodicalId":370735,"journal":{"name":"Digital Intelligence","volume":"37 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29406/diligent.v2i2.3286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
produksi masih menggunakan metode perhitungan berdasarkan hasil produksi yang terkadang jumlahnya sangat berlebih dan kurang. Penelitian ini bertujuan untuk mengoptimalkan jumlah produksi roti maka dibutuhkan sistem informasi peramalan persediaan roti menggunakan metode Single Exponential Smoothing. Peramalan persediaan produksi roti dilakukan dengan pengujian tingkat keakuratan hasil peramalan. Tingkat keakuratan dihasilkan dari nilai MAPE disetiap perhitungan, semakin kecil nilai MAPE maka tingkat Abstract When determining the amount of production or inventory of each type of bread, production managers still use the calculation method based on their own estimates, causing production results which are sometimes excessive and Less. This research aims to optimize the amount of bread production, which takes information system forecasting bread supplies using the Single Exponential Smoothing method. Forecasting of bread production supply by testing the accuracy of the forecasting results. The accuracy level is generated from the MAPE value in each calculation, the smaller the MAPE value, the more precise the accuracy level. Testing was conducted with forecasting results using alphas that differ from 0.1 – 0.9. After testing obtained the best mape results for each type of bread, for the best alpha burger bread is alpha 0.4 with a forecast value of 670 pieces of bread, for the best alpha bread is 0.2 with a forecasting number of 234 pieces of bread, for the best alpha chocolate pia bread is 0.5 with a forecasting number of 1783 pieces of bread, for the best alpha green bean pia bread 0.6 with a forecasting number of 1480 pieces of bread for the best alpha chocolate sandwich 0.6 with a forecasting number of 1788 pieces of bread for the best alpha srikaya sandwich is 0.9 with a forecast number of 1764 pieces of bread and for the average accuracy of all types of bread is 94%.
我们的产品已经形成了一套完整的质量控制方法,以确保从生产到销售的每一个环节都严格按照质量标准进行。该系统的目的是优化旋转食品的生产,并使用单指数平滑方法来建立旋转食品的生产周期信息系统。旋转食品的生产周期是由生产周期的生产过程决定的。Tingkat keakuratan dihasilkan dari nilai MAPE disetiap perhitungan, semakin kecil nilai MAPE maka tingkat Abstract When determining the amount of production or inventory of each type of bread, production managers still use the calculation method based on their own estimates, causing production results which are sometimes excessive and Less.该研究旨在优化每种面包的生产量或库存量。本研究旨在优化面包生产量,采用单指数平滑法预测面包供应量的信息系统。通过测试预测结果的准确性来预测面包生产供应量。准确度由每次计算的 MAPE 值决定,MAPE 值越小,准确度越高。测试时使用了 0.1 - 0.9 不等的预测结果。经过测试,获得了每种面包的最佳 mape 结果,最佳 alpha 汉堡包的 alpha 值为 0.4,预测值为 670 块面包;最佳 alpha 面包的 alpha 值为 0.2,预测值为 234 块面包;最佳 alpha 巧克力 pia 面包的 alpha 值为 0.5,预测值为 1783 块面包;最佳 alpha 绿豆 pia 面包的 alpha 值为 0.6,预报面包数为 1480 个,最佳阿尔法巧克力三明治为 0.6,预报面包数为 1788 个,最佳阿尔法斯里卡亚三明治为 0.9,预报面包数为 1764 个,所有类型面包的平均准确率为 94%。