Semi-supervised learning for fault identification in electricity distribution networks

Xinyang Li, Hong-fa Meng, Xiaoling Peng
{"title":"Semi-supervised learning for fault identification in electricity distribution networks","authors":"Xinyang Li, Hong-fa Meng, Xiaoling Peng","doi":"10.1117/12.2589229","DOIUrl":null,"url":null,"abstract":"The detection and identification of faults in electricity distribution networks is essential in improving the reliability of power supply. After observing many fault current signals we found that: (1) features of many recorded fault electrical signals were unknown or obscure; (2) the fault types of most sample signals had no clear definition, that is, the labeled sample were very limited. In this situation, the semi-supervised support vector machine (S3VM) and SVM active learning were firstly introduced to distinguish the short circuit and grounding in distribution networks. We used wavelet packet analysis to extract features based on energy spectrum as the physical features of electric signals, then some statistical characteristics were also computed and selected to form a mixed feature set. A case study was conducted on a real data set including 72 labeled and 7720 unlabeled electrical signals for fault diagnosis. By performing transductive support vector machine (TSVM) and SVM active learning with mixed features, our experimental results showed that both of the two models can effectively identify the fault types. Meanwhile, the accuracy of TSVM is higher than that of SVM active learning.","PeriodicalId":415097,"journal":{"name":"International Conference on Signal Processing Systems","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2589229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The detection and identification of faults in electricity distribution networks is essential in improving the reliability of power supply. After observing many fault current signals we found that: (1) features of many recorded fault electrical signals were unknown or obscure; (2) the fault types of most sample signals had no clear definition, that is, the labeled sample were very limited. In this situation, the semi-supervised support vector machine (S3VM) and SVM active learning were firstly introduced to distinguish the short circuit and grounding in distribution networks. We used wavelet packet analysis to extract features based on energy spectrum as the physical features of electric signals, then some statistical characteristics were also computed and selected to form a mixed feature set. A case study was conducted on a real data set including 72 labeled and 7720 unlabeled electrical signals for fault diagnosis. By performing transductive support vector machine (TSVM) and SVM active learning with mixed features, our experimental results showed that both of the two models can effectively identify the fault types. Meanwhile, the accuracy of TSVM is higher than that of SVM active learning.
配电网故障识别的半监督学习
配电网故障的检测与识别对提高供电可靠性至关重要。通过对大量故障电流信号的观察,我们发现:(1)许多记录的故障电信号特征未知或模糊;(2)大多数样本信号的故障类型没有明确的定义,即标记的样本非常有限。在这种情况下,首先引入了半监督支持向量机(S3VM)和支持向量机主动学习来区分配电网的短路和接地。采用小波包分析方法提取基于能谱的特征作为电信号的物理特征,然后计算并选择一些统计特征组成混合特征集。以一个真实数据集为例,对72个带标记和7720个未标记的电信号进行故障诊断。实验结果表明,采用混合特征的转换支持向量机(TSVM)和支持向量机(SVM)主动学习模型均能有效识别故障类型。同时,TSVM的准确率高于SVM主动学习的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信