A neural net topology for bidirectional fuzzy-neuro transformation

W. Hauptmann, K. Heesche
{"title":"A neural net topology for bidirectional fuzzy-neuro transformation","authors":"W. Hauptmann, K. Heesche","doi":"10.1109/FUZZY.1995.409879","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an integrated neuro-fuzzy system (INFS) that facilitates the functional equivalent conversion between fuzzy systems and neural networks thus combining the advantages of both paradigms. The basis for the INFS constitutes a special neural network architecture with a structure corresponding to that of a fuzzy model. In a repeated cycle, knowledge acquired from an expert is converted from a fuzzy system to a neural net which is applied to a target system to learn from the data. After completed adaptation the neural network is translated back into a fuzzy model. First results demonstrate the significant performance with respect to data-driven optimization of fuzzy system components.<<ETX>>","PeriodicalId":150477,"journal":{"name":"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1995.409879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

In this paper, we propose an integrated neuro-fuzzy system (INFS) that facilitates the functional equivalent conversion between fuzzy systems and neural networks thus combining the advantages of both paradigms. The basis for the INFS constitutes a special neural network architecture with a structure corresponding to that of a fuzzy model. In a repeated cycle, knowledge acquired from an expert is converted from a fuzzy system to a neural net which is applied to a target system to learn from the data. After completed adaptation the neural network is translated back into a fuzzy model. First results demonstrate the significant performance with respect to data-driven optimization of fuzzy system components.<>
一种用于双向模糊神经转换的神经网络拓扑
在本文中,我们提出了一个集成神经模糊系统(INFS),它促进了模糊系统和神经网络之间的功能等效转换,从而结合了两种范式的优点。该系统的基础是一个特殊的神经网络结构,其结构与模糊模型的结构相对应。在一个重复的循环中,从专家那里获得的知识从一个模糊系统转换到一个神经网络,该神经网络应用于目标系统,从数据中学习。完成自适应后,神经网络被转换回一个模糊模型。第一个结果表明,在数据驱动的模糊系统组件优化方面,该方法具有显著的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信