Decomposition of a Greenhouse Fuzzy Model

P. Salgado, P. Afonso
{"title":"Decomposition of a Greenhouse Fuzzy Model","authors":"P. Salgado, P. Afonso","doi":"10.1109/ETFA.2006.355191","DOIUrl":null,"url":null,"abstract":"This paper describes the identification of greenhouse climate processes with multiple fuzzy models by resulting of decomposition of one global (flat) fuzzy model. This process is called separation of linguistic information methodology - SLIM. In this paper, the SLIM methodology is based on fuzzy clustering of fuzzy rules algorithm (FCFRA), which is a generalization of the well-known fuzzy c-means. It allows the automatic organization of the sets of fuzzy IF ... THEN rules of one fuzzy system into a multimodel hierarchical structure, result of clustering process of fuzzy rules. This technique is used to organize the fuzzy greenhouse climate model into a new structure more interpretable, as in the case of the physical model. This new methodology was tested to split the inside greenhouse air temperature and humidity flat fuzzy models into fuzzy sub-models.","PeriodicalId":431393,"journal":{"name":"2006 IEEE Conference on Emerging Technologies and Factory Automation","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Emerging Technologies and Factory Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2006.355191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes the identification of greenhouse climate processes with multiple fuzzy models by resulting of decomposition of one global (flat) fuzzy model. This process is called separation of linguistic information methodology - SLIM. In this paper, the SLIM methodology is based on fuzzy clustering of fuzzy rules algorithm (FCFRA), which is a generalization of the well-known fuzzy c-means. It allows the automatic organization of the sets of fuzzy IF ... THEN rules of one fuzzy system into a multimodel hierarchical structure, result of clustering process of fuzzy rules. This technique is used to organize the fuzzy greenhouse climate model into a new structure more interpretable, as in the case of the physical model. This new methodology was tested to split the inside greenhouse air temperature and humidity flat fuzzy models into fuzzy sub-models.
温室模糊模型的分解
本文通过对一个全局(平面)模糊模型的分解,描述了用多个模糊模型识别温室气候过程的方法。这一过程被称为语言信息分离方法论——SLIM。在本文中,SLIM方法是基于模糊规则的模糊聚类算法(FCFRA),这是众所周知的模糊c-means的推广。它允许自动组织模糊IF集合。然后将一个模糊系统的规则分解成一个多模型的层次结构,这是模糊规则聚类过程的结果。该技术用于将模糊温室气候模型组织成一个更易于解释的新结构,就像物理模型一样。对该方法进行了验证,将温室内空气温湿度平面模糊模型分解为模糊子模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信