Color image retrieval using intuitionistic fuzzy sets

F. Afsari, E. Eslami
{"title":"Color image retrieval using intuitionistic fuzzy sets","authors":"F. Afsari, E. Eslami","doi":"10.1109/IRANIANMVIP.2010.5941161","DOIUrl":null,"url":null,"abstract":"In this paper, a new attempt is being made using Attanassov's intuitionistic fuzzy set theory for image retrieval. Intuitionistic fuzzy sets consider not only membership degree of belonging but also take into account the uncertainty involved in membership degree known as hesitation measure. Color features (expressed in various color representation systems), were intensively used (independently or jointly) during the last decade. We propose to revisit the use of color image contents as image descriptors through the introduction of fuzziness, which naturally arise from the imprecision or vagueness of the pixel color values and human perception. This has been applied in the HSV color space. Hue and value are two color features that are used to construct intuitionistic fuzzy sets; we construct two-dimensional sets which are more suitable than one-dimensional ones. Another key aspect of our method is using fuzzy quantities as a similarity measure between two intuitionistic fuzzy sets instead of a real number due to the imprecision of the similarities. To show the robustness of the proposed method, many experiments with large databases are performed and the results show the high performance of finding similar images.","PeriodicalId":350778,"journal":{"name":"2010 6th Iranian Conference on Machine Vision and Image Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 6th Iranian Conference on Machine Vision and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANMVIP.2010.5941161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a new attempt is being made using Attanassov's intuitionistic fuzzy set theory for image retrieval. Intuitionistic fuzzy sets consider not only membership degree of belonging but also take into account the uncertainty involved in membership degree known as hesitation measure. Color features (expressed in various color representation systems), were intensively used (independently or jointly) during the last decade. We propose to revisit the use of color image contents as image descriptors through the introduction of fuzziness, which naturally arise from the imprecision or vagueness of the pixel color values and human perception. This has been applied in the HSV color space. Hue and value are two color features that are used to construct intuitionistic fuzzy sets; we construct two-dimensional sets which are more suitable than one-dimensional ones. Another key aspect of our method is using fuzzy quantities as a similarity measure between two intuitionistic fuzzy sets instead of a real number due to the imprecision of the similarities. To show the robustness of the proposed method, many experiments with large databases are performed and the results show the high performance of finding similar images.
基于直觉模糊集的彩色图像检索
本文利用Attanassov的直觉模糊集理论对图像检索进行了新的尝试。直觉模糊集不仅考虑归属的隶属度,而且考虑隶属度所包含的不确定性,即犹豫度量。在过去十年中,颜色特征(以各种颜色表示系统表示)被广泛使用(独立或联合)。我们建议重新审视彩色图像内容作为图像描述符的使用,通过引入模糊性,这自然是由于像素颜色值和人类感知的不精确或模糊而产生的。这已经应用在HSV色彩空间。色相和值是用来构造直觉模糊集的两个颜色特征;我们构造了比一维集合更合适的二维集合。我们方法的另一个关键方面是使用模糊量作为两个直觉模糊集之间的相似性度量,而不是由于相似性的不精确而使用实数。为了证明该方法的鲁棒性,在大型数据库中进行了大量实验,结果表明该方法在寻找相似图像方面具有很高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信