Sliding Mode Variable Structure Controller for PSO-RBF Hypersonic Vehicle

Deng Yaosheng
{"title":"Sliding Mode Variable Structure Controller for PSO-RBF Hypersonic Vehicle","authors":"Deng Yaosheng","doi":"10.1109/icomssc45026.2018.8941700","DOIUrl":null,"url":null,"abstract":"The dynamic model of hypersonic vehicle has nonlinear and uncertain characteristics. The traditional sliding mode variable structure needs to combine the optimization algorithm to suppress the chattering problem. The sliding mode variable structure controller based on RBF neural network parameter adjustment can eliminate the chattering problem of sliding mode control to a certain extent, but the uncertainty of network self-learning effect will affect the convergence efficiency of parameters, in order to improve the approximation effect of the network. The RBF neural network and particle swarm optimization algorithm are combined organically, the particle swarm optimization algorithm is used to optimize the hidden layer basis function width of the RBF neural network and the self-learning, self-adaptive and self-organizing ability of the center improvement algorithm, and the PSO-RBF tuning law is designed to train and test the height step command and the speed step command. The efficiency of the parameter convergence of the sliding mode variable structure controller algorithm is improved. Through a large number of numerical simulations and controller algorithm comparison analysis, it is verified that the sliding mode variable structure controller of PSO-RBF tuning parameters has strong robustness in suppressing various uncertainties due to interference.","PeriodicalId":332213,"journal":{"name":"2018 International Computers, Signals and Systems Conference (ICOMSSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Computers, Signals and Systems Conference (ICOMSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icomssc45026.2018.8941700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamic model of hypersonic vehicle has nonlinear and uncertain characteristics. The traditional sliding mode variable structure needs to combine the optimization algorithm to suppress the chattering problem. The sliding mode variable structure controller based on RBF neural network parameter adjustment can eliminate the chattering problem of sliding mode control to a certain extent, but the uncertainty of network self-learning effect will affect the convergence efficiency of parameters, in order to improve the approximation effect of the network. The RBF neural network and particle swarm optimization algorithm are combined organically, the particle swarm optimization algorithm is used to optimize the hidden layer basis function width of the RBF neural network and the self-learning, self-adaptive and self-organizing ability of the center improvement algorithm, and the PSO-RBF tuning law is designed to train and test the height step command and the speed step command. The efficiency of the parameter convergence of the sliding mode variable structure controller algorithm is improved. Through a large number of numerical simulations and controller algorithm comparison analysis, it is verified that the sliding mode variable structure controller of PSO-RBF tuning parameters has strong robustness in suppressing various uncertainties due to interference.
PSO-RBF高超声速飞行器滑模变结构控制器
高超声速飞行器的动力学模型具有非线性和不确定性。传统的滑模变结构需要结合优化算法来抑制抖振问题。基于RBF神经网络参数调整的滑模变结构控制器可以在一定程度上消除滑模控制的抖振问题,但网络自学习效果的不确定性会影响参数的收敛效率,以提高网络的逼近效果。将RBF神经网络与粒子群优化算法有机结合,利用粒子群优化算法对RBF神经网络的隐层基函数宽度和中心改进算法的自学习、自适应、自组织能力进行优化,设计PSO-RBF调谐律对高度阶跃命令和速度阶跃命令进行训练和测试。提高了滑模变结构控制器算法的参数收敛效率。通过大量的数值仿真和控制器算法对比分析,验证了PSO-RBF整定参数的滑模变结构控制器在抑制各种干扰不确定性方面具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信