Won-Chul Jang, Myeongsu Kang, Jaeyoung Kim, Jong-Myon Kim, Hung Nguyen Ngoc
{"title":"Reliable condition monitoring of an induction motor using a genetic algorithm based method","authors":"Won-Chul Jang, Myeongsu Kang, Jaeyoung Kim, Jong-Myon Kim, Hung Nguyen Ngoc","doi":"10.1109/CIES.2014.7011828","DOIUrl":null,"url":null,"abstract":"Condition monitoring is a vital task in the maintenance of industry machines. This paper proposes a reliable condition monitoring method using a genetic algorithm (GA) which selects the most discriminate features by taking a transformation matrix. Experimental results show that the features selected by the GA outperforms original and randomly selected features using the same k-nearest neighbor (k-NN) classifier in terms of convergence rate, the number of features, and classification accuracy. The GA-based feature selection method improves the classification accuracy from 3% to 100% and from 30% to 100% over the original and randomly selected features, respectively.","PeriodicalId":287779,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIES.2014.7011828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Condition monitoring is a vital task in the maintenance of industry machines. This paper proposes a reliable condition monitoring method using a genetic algorithm (GA) which selects the most discriminate features by taking a transformation matrix. Experimental results show that the features selected by the GA outperforms original and randomly selected features using the same k-nearest neighbor (k-NN) classifier in terms of convergence rate, the number of features, and classification accuracy. The GA-based feature selection method improves the classification accuracy from 3% to 100% and from 30% to 100% over the original and randomly selected features, respectively.