BGP Beacons, Network Tomography, and Bayesian Computation to Locate Route Flap Damping

Caitlin Gray, Clemens Mosig, R. Bush, C. Pelsser, M. Roughan, T. Schmidt, Matthias Wählisch
{"title":"BGP Beacons, Network Tomography, and Bayesian Computation to Locate Route Flap Damping","authors":"Caitlin Gray, Clemens Mosig, R. Bush, C. Pelsser, M. Roughan, T. Schmidt, Matthias Wählisch","doi":"10.1145/3419394.3423624","DOIUrl":null,"url":null,"abstract":"Pinpointing autonomous systems which deploy specific inter-domain techniques such as Route Flap Damping (RFD) or Route Origin Validation (ROV) remains a challenge today. Previous approaches to detect per-AS behavior often relied on heuristics derived from passive and active measurements. Those heuristics, however, often lacked accuracy or imposed tight restrictions on the measurement methods. We introduce an algorithmic framework for network tomography, BeCAUSe, which implements Bayesian Computation for Autonomous Systems. Using our original combination of active probing and stochastic simulation, we present the first study to expose the deployment of RFD. In contrast to the expectation of the Internet community, we find that at least 9% of measured ASs enable RFD, most using deprecated vendor default configuration parameters. To illustrate the power of computational Bayesian methods we compare BeCAUSe with three RFD heuristics. Thereafter we successfully apply a generalization of the Bayesian method to a second challenge, measuring deployment of ROV.","PeriodicalId":255324,"journal":{"name":"Proceedings of the ACM Internet Measurement Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Internet Measurement Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3419394.3423624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Pinpointing autonomous systems which deploy specific inter-domain techniques such as Route Flap Damping (RFD) or Route Origin Validation (ROV) remains a challenge today. Previous approaches to detect per-AS behavior often relied on heuristics derived from passive and active measurements. Those heuristics, however, often lacked accuracy or imposed tight restrictions on the measurement methods. We introduce an algorithmic framework for network tomography, BeCAUSe, which implements Bayesian Computation for Autonomous Systems. Using our original combination of active probing and stochastic simulation, we present the first study to expose the deployment of RFD. In contrast to the expectation of the Internet community, we find that at least 9% of measured ASs enable RFD, most using deprecated vendor default configuration parameters. To illustrate the power of computational Bayesian methods we compare BeCAUSe with three RFD heuristics. Thereafter we successfully apply a generalization of the Bayesian method to a second challenge, measuring deployment of ROV.
BGP信标、网络层析成像和贝叶斯计算定位路由Flap阻尼
精确定位部署特定域间技术的自主系统,如航路襟翼阻尼(RFD)或航路起源验证(ROV),目前仍然是一个挑战。以前检测per-AS行为的方法通常依赖于来自被动和主动测量的启发式方法。然而,这些启发式方法往往缺乏准确性或对测量方法施加了严格的限制。我们介绍了一个网络断层扫描的算法框架,因为,它实现了自治系统的贝叶斯计算。利用我们最初的主动探测和随机模拟的组合,我们提出了第一个揭示RFD部署的研究。与Internet社区的期望相反,我们发现至少有9%的被测量的as启用了RFD,其中大多数使用了已弃用的供应商默认配置参数。为了说明计算贝叶斯方法的强大功能,我们将BeCAUSe与三种RFD启发式方法进行比较。此后,我们成功地将贝叶斯方法推广到第二个挑战,即测量ROV的部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信