Web text mining using a hybrid system

F. H. Fukuda, L. Neto, V. D. R. Junior, E. Antonio, L. Chiganer, Emmanuel L. P. Passos, M. Pacheco, J. Valério
{"title":"Web text mining using a hybrid system","authors":"F. H. Fukuda, L. Neto, V. D. R. Junior, E. Antonio, L. Chiganer, Emmanuel L. P. Passos, M. Pacheco, J. Valério","doi":"10.1109/SBRN.2000.889727","DOIUrl":null,"url":null,"abstract":"This paper presents the research of artificial intelligence techniques based on knowledge discovery in databases (KDD), knowledge discovery in texts, expert systems and artificial neural networks (ANN) applied for evaluation and selection of textual documents found on the World Wide Web. These techniques are useful because nowadays we have a explosive growth of the Web that provides a great amount of documents of many different subjects and the user needs to select these documents regarding to theirs particular interests. We considered the Web as a large data warehouse and applied the KDD fundament and text mining procedures to develop these techniques. The techniques developed are language syntax independent because they do not use the NLP parser and provide an automatic text evaluation based on user profile interests acquired by examples using ANN. Finally, we developed a system using these techniques and compared with a similar commercial system available in the Web.","PeriodicalId":448461,"journal":{"name":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2000.889727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents the research of artificial intelligence techniques based on knowledge discovery in databases (KDD), knowledge discovery in texts, expert systems and artificial neural networks (ANN) applied for evaluation and selection of textual documents found on the World Wide Web. These techniques are useful because nowadays we have a explosive growth of the Web that provides a great amount of documents of many different subjects and the user needs to select these documents regarding to theirs particular interests. We considered the Web as a large data warehouse and applied the KDD fundament and text mining procedures to develop these techniques. The techniques developed are language syntax independent because they do not use the NLP parser and provide an automatic text evaluation based on user profile interests acquired by examples using ANN. Finally, we developed a system using these techniques and compared with a similar commercial system available in the Web.
使用混合系统的Web文本挖掘
本文介绍了基于数据库中的知识发现(KDD)、文本中的知识发现、专家系统和人工神经网络(ANN)的人工智能技术在万维网文本文档评价和选择中的应用。这些技术是有用的,因为现在我们有一个爆炸性增长的Web,提供了许多不同主题的大量文档,用户需要根据他们的特殊兴趣选择这些文档。我们将Web视为一个大型数据仓库,并应用KDD基础和文本挖掘过程来开发这些技术。所开发的技术是语言语法独立的,因为它们不使用NLP解析器,而是基于使用人工神经网络获得的示例获取的用户概要兴趣提供自动文本评估。最后,我们利用这些技术开发了一个系统,并与Web上可用的类似商业系统进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信