Comparison between WLD and LBP descriptors for non-intrusive image forgery detection

M. Hussain, Sahar Q. Saleh, Hatim Aboalsamh, Muhammad Ghulam, G. Bebis
{"title":"Comparison between WLD and LBP descriptors for non-intrusive image forgery detection","authors":"M. Hussain, Sahar Q. Saleh, Hatim Aboalsamh, Muhammad Ghulam, G. Bebis","doi":"10.1109/INISTA.2014.6873618","DOIUrl":null,"url":null,"abstract":"Due to the availability of easy-to-use and powerful image editing tools, the authentication of digital images cannot be taken for granted and it gives rise to non-intrusive forgery detection problem because all imaging devices do not embed watermark. We investigated the detection of copy-move and splicing, the two harmful types of image forgery, using textural properties of images. Tampering distorts the texture micro-patterns in an image and texture descriptors can be employed to detect tampering. We did comparative study to examine the effect of two state-of-the-art best texture descriptors: Multiscale Local Binary Pattern (Multi-LBP) and Multiscale Weber Law Descriptor (Multi-WLD). Multiscale texture descriptors extracted from the chrominance components of an image are passed to Support Vector Machine (SVM) to identify it as authentic or forged. The performance comparison reveals that Multi-WLD performs better than Multi-LBP in detecting copy-move and splicing forgeries. Multi-WLD also outperforms state-of-the-art passive forgery detection techniques.","PeriodicalId":339652,"journal":{"name":"2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2014.6873618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Due to the availability of easy-to-use and powerful image editing tools, the authentication of digital images cannot be taken for granted and it gives rise to non-intrusive forgery detection problem because all imaging devices do not embed watermark. We investigated the detection of copy-move and splicing, the two harmful types of image forgery, using textural properties of images. Tampering distorts the texture micro-patterns in an image and texture descriptors can be employed to detect tampering. We did comparative study to examine the effect of two state-of-the-art best texture descriptors: Multiscale Local Binary Pattern (Multi-LBP) and Multiscale Weber Law Descriptor (Multi-WLD). Multiscale texture descriptors extracted from the chrominance components of an image are passed to Support Vector Machine (SVM) to identify it as authentic or forged. The performance comparison reveals that Multi-WLD performs better than Multi-LBP in detecting copy-move and splicing forgeries. Multi-WLD also outperforms state-of-the-art passive forgery detection techniques.
WLD和LBP描述符在非侵入式图像伪造检测中的比较
由于使用方便、功能强大的图像编辑工具的存在,数字图像的身份验证并不是理所当然的,由于所有的成像设备都没有嵌入水印,因此产生了非侵入式伪造检测问题。利用图像的纹理特性,研究了复制移动和拼接这两种有害的图像伪造类型的检测方法。篡改会扭曲图像中的纹理微图案,可以使用纹理描述符来检测篡改。我们比较研究了两种最先进的纹理描述符:多尺度局部二值模式(Multi-LBP)和多尺度韦伯定律描述符(Multi-WLD)的效果。从图像的色度分量中提取多尺度纹理描述符,将其传递给支持向量机(SVM)来识别图像的真伪。性能比较表明,Multi-WLD在检测复制移动和拼接伪造方面优于Multi-LBP。多世界也优于最先进的被动伪造检测技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信