RoboNet: a Neural Network Based Kinematic Parameter Identification Model

Diwen Xiong, Mingsheng Shang
{"title":"RoboNet: a Neural Network Based Kinematic Parameter Identification Model","authors":"Diwen Xiong, Mingsheng Shang","doi":"10.1109/ICNSC52481.2021.9702247","DOIUrl":null,"url":null,"abstract":"The positioning accuracy of a robot is crucial for its industrial applications. A common way to improve such accuracy is through robot calibration, which mostly aims to identify the errors of a robot’s kinematic parameters. However, while a robot kinematic model being a highly nonlinear system with non-Gaussian noises, approaches could cause truncation error when approximating such nonlinearity, resulting in a less sufficient calibration result. To address this issue, this paper innovatively proposes a neural network-based approach: the RoboNet, which identifies the kinematic parameters by nonlinearly approximating the error function of each parameter with neurons and nonlinear activation functions. It also provides a unified architecture for kinematic parameters identification of the robot calibration process, so that with simple modifications, RoboNet could be applied to the various robot calibration processes. And supported by the simulation results, RoboNet can accurately identify the errors in kinematic parameters and is robust against flawed data.","PeriodicalId":129062,"journal":{"name":"2021 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC52481.2021.9702247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The positioning accuracy of a robot is crucial for its industrial applications. A common way to improve such accuracy is through robot calibration, which mostly aims to identify the errors of a robot’s kinematic parameters. However, while a robot kinematic model being a highly nonlinear system with non-Gaussian noises, approaches could cause truncation error when approximating such nonlinearity, resulting in a less sufficient calibration result. To address this issue, this paper innovatively proposes a neural network-based approach: the RoboNet, which identifies the kinematic parameters by nonlinearly approximating the error function of each parameter with neurons and nonlinear activation functions. It also provides a unified architecture for kinematic parameters identification of the robot calibration process, so that with simple modifications, RoboNet could be applied to the various robot calibration processes. And supported by the simulation results, RoboNet can accurately identify the errors in kinematic parameters and is robust against flawed data.
基于神经网络的机器人运动参数辨识模型
机器人的定位精度对其工业应用至关重要。提高这种精度的一种常用方法是通过机器人校准,其主要目的是识别机器人运动学参数的误差。然而,由于机器人运动学模型是一个高度非线性的非高斯噪声系统,在逼近这种非线性时,方法可能会产生截断误差,导致校准结果不充分。为了解决这一问题,本文创新性地提出了一种基于神经网络的方法:RoboNet,该方法通过神经元和非线性激活函数非线性逼近每个参数的误差函数来识别运动参数。为机器人标定过程的运动学参数识别提供了统一的体系结构,通过简单的修改,就可以将RoboNet应用于各种机器人标定过程。仿真结果表明,RoboNet能够准确识别运动参数误差,并具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信