Proving SAT does not have small circuits with an application to the two queries problem

L. Fortnow, A. Pavan, Samik Sengupta
{"title":"Proving SAT does not have small circuits with an application to the two queries problem","authors":"L. Fortnow, A. Pavan, Samik Sengupta","doi":"10.1109/CCC.2003.1214433","DOIUrl":null,"url":null,"abstract":"We show that if SAT does not have small circuits, then there must exist a small number of formulas such that every small circuit fails to compute satisfiability correctly on at least one of these formulas. We use this result to show that if P/sup NP[1]/=P/sup NP[2]/, then the polynomial-time hierarchy collapses to S/sub 2//sup P//spl sube//spl Sigma//sub 2//sup p//spl cap//spl Pi//sub 2//sup p/. Even showing that the hierarchy collapsed to /spl Sigma//sub 2//sup p/ remained open.","PeriodicalId":286846,"journal":{"name":"18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings.","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2003.1214433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

We show that if SAT does not have small circuits, then there must exist a small number of formulas such that every small circuit fails to compute satisfiability correctly on at least one of these formulas. We use this result to show that if P/sup NP[1]/=P/sup NP[2]/, then the polynomial-time hierarchy collapses to S/sub 2//sup P//spl sube//spl Sigma//sub 2//sup p//spl cap//spl Pi//sub 2//sup p/. Even showing that the hierarchy collapsed to /spl Sigma//sub 2//sup p/ remained open.
通过两个查询问题的应用证明SAT没有小电路
我们证明,如果SAT没有小电路,那么必须存在少量的公式,使得每个小电路不能正确地计算至少一个这些公式的可满足性。我们用这个结果表明,如果P/sup NP[1]/=P/sup NP[2]/,那么多项式时间层次结构将崩溃为S/sub 2//sup P//spl sub //spl Sigma//sub 2//sup P//spl cap//spl Pi//sub 2//sup P/。即使显示层次结构崩溃到/spl Sigma//sub 2//sup p/仍然开放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信