Integrating with Segmentation by Using Multi-Task Learning Improves Classification Performance in Medical Image Analysis

Yi Li, Yuanyuan Zhao, Mingyu Wang, Fei Li, Jia Chen, Yanji Luo, S. Feng, Xiaoyi Lin, Bingsheng Huang
{"title":"Integrating with Segmentation by Using Multi-Task Learning Improves Classification Performance in Medical Image Analysis","authors":"Yi Li, Yuanyuan Zhao, Mingyu Wang, Fei Li, Jia Chen, Yanji Luo, S. Feng, Xiaoyi Lin, Bingsheng Huang","doi":"10.1109/CBMS55023.2022.00069","DOIUrl":null,"url":null,"abstract":"Diagnosis of tumors is an important direction of computer-aided diagnosis (CAD). The shape, size, and boundary of the tumor are widely-used diagnostic evidence, and the corresponding segmentation annotated by the radiologists is a vital expert knowledge, which can be used as supervision to guide feature extraction. Therefore, this study firstly introduces a multi-task learning (MTL) network integrating segmentation task for predicting grading of pancreatic neuroendocrine neoplasms (pNENs) and the microvascular invasion (MVI) of hepatocellular carcinoma (HCC). The proposed network combines a powerful split-attention-based encoder and a U-net decoder, and achieves the best performance in comparisons of other popular networks and previous studies. In addition, feature map visualization suggests that the reason for the improved classification performance may be that MTL makes the encoder pay more attention to lesions and extract more semantic information.","PeriodicalId":218475,"journal":{"name":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS55023.2022.00069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diagnosis of tumors is an important direction of computer-aided diagnosis (CAD). The shape, size, and boundary of the tumor are widely-used diagnostic evidence, and the corresponding segmentation annotated by the radiologists is a vital expert knowledge, which can be used as supervision to guide feature extraction. Therefore, this study firstly introduces a multi-task learning (MTL) network integrating segmentation task for predicting grading of pancreatic neuroendocrine neoplasms (pNENs) and the microvascular invasion (MVI) of hepatocellular carcinoma (HCC). The proposed network combines a powerful split-attention-based encoder and a U-net decoder, and achieves the best performance in comparisons of other popular networks and previous studies. In addition, feature map visualization suggests that the reason for the improved classification performance may be that MTL makes the encoder pay more attention to lesions and extract more semantic information.
将多任务学习与分割相结合,提高了医学图像分析的分类性能
肿瘤诊断是计算机辅助诊断(CAD)的一个重要方向。肿瘤的形状、大小和边界是广泛使用的诊断依据,放射科医师标注的相应分割是至关重要的专家知识,可以作为指导特征提取的监督。因此,本研究首先引入一种整合分割任务的多任务学习(MTL)网络,用于预测胰腺神经内分泌肿瘤(pNENs)的分级和肝细胞癌(HCC)的微血管侵袭(MVI)。该网络结合了一个强大的基于分散注意力的编码器和一个U-net解码器,与其他流行的网络和先前的研究相比,取得了最好的性能。此外,特征图可视化表明,分类性能提高的原因可能是MTL使编码器更加关注病灶,提取更多的语义信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信