An image retrieval system using multispectral random field models, color, and geometric features

O. Hernandez, A. Khotanzad
{"title":"An image retrieval system using multispectral random field models, color, and geometric features","authors":"O. Hernandez, A. Khotanzad","doi":"10.1109/AIPR.2004.13","DOIUrl":null,"url":null,"abstract":"This paper describes a novel color texture-based image retrieval system for the query of an image database to find similar images to a target image. The retrieval process involves segmenting the image into regions of uniform color texture using an unsupervised histogram clustering approach that utilizes the combination of multispectral simultaneous auto regressive (MSAR) and color features. The color texture content, location, area and shape of the segmented regions are used to develop similarity measures describing the closeness of a query image to database images. These attributes are derived from the maximum fitting square and best fitting ellipse to each of the segmented regions. The proposed similarity measure combines all these attributes to rank the closeness of the images. The performance of the system is tested on two databases containing synthetic mosaics of natural textures and natural scenes, respectively.","PeriodicalId":120814,"journal":{"name":"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2004.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes a novel color texture-based image retrieval system for the query of an image database to find similar images to a target image. The retrieval process involves segmenting the image into regions of uniform color texture using an unsupervised histogram clustering approach that utilizes the combination of multispectral simultaneous auto regressive (MSAR) and color features. The color texture content, location, area and shape of the segmented regions are used to develop similarity measures describing the closeness of a query image to database images. These attributes are derived from the maximum fitting square and best fitting ellipse to each of the segmented regions. The proposed similarity measure combines all these attributes to rank the closeness of the images. The performance of the system is tested on two databases containing synthetic mosaics of natural textures and natural scenes, respectively.
一个使用多光谱随机场模型、颜色和几何特征的图像检索系统
本文描述了一种基于颜色纹理的图像检索系统,用于在图像数据库中查询与目标图像相似的图像。检索过程包括使用无监督直方图聚类方法将图像分割成均匀颜色纹理的区域,该方法结合了多光谱同时自动回归(MSAR)和颜色特征。使用分割区域的颜色、纹理、内容、位置、面积和形状来开发相似性度量,描述查询图像与数据库图像的接近程度。这些属性来源于对每个分割区域的最大拟合平方和最佳拟合椭圆。所提出的相似度度量结合了所有这些属性来对图像的接近度进行排序。在包含自然纹理和自然场景合成拼接的两个数据库上分别对系统的性能进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信