Exploration for Understanding in Cognitive Modeling

K. Gluck, Clayton Stanley, L. Moore, D. Reitter, M. Halbrügge
{"title":"Exploration for Understanding in Cognitive Modeling","authors":"K. Gluck, Clayton Stanley, L. Moore, D. Reitter, M. Halbrügge","doi":"10.2478/v10229-011-0011-7","DOIUrl":null,"url":null,"abstract":"Exploration for Understanding in Cognitive Modeling The cognitive modeling and artificial general intelligence research communities may reap greater scientific return on research investments - may achieve an improved understanding of architectures and models - if there is more emphasis on systematic sensitivity and necessity analyses during model development, evaluation, and comparison. We demonstrate this methodological prescription with two of the models submitted for the Dynamic Stocks and Flows (DSF) Model Comparison Challenge, exploring the complex interactions among architectural mechanisms, knowledge-level strategy variants, and task conditions. To cope with the computational demands of these analyses we use a predictive analytics approach similar to regression trees, combined with parallelization on high performance computing clusters, to enable large scale, simultaneous search and exploration.","PeriodicalId":247142,"journal":{"name":"Journal of Artificial General Intelligence","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial General Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/v10229-011-0011-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Exploration for Understanding in Cognitive Modeling The cognitive modeling and artificial general intelligence research communities may reap greater scientific return on research investments - may achieve an improved understanding of architectures and models - if there is more emphasis on systematic sensitivity and necessity analyses during model development, evaluation, and comparison. We demonstrate this methodological prescription with two of the models submitted for the Dynamic Stocks and Flows (DSF) Model Comparison Challenge, exploring the complex interactions among architectural mechanisms, knowledge-level strategy variants, and task conditions. To cope with the computational demands of these analyses we use a predictive analytics approach similar to regression trees, combined with parallelization on high performance computing clusters, to enable large scale, simultaneous search and exploration.
认知建模中的理解探索
如果在模型开发、评估和比较过程中更多地强调系统的敏感性和必要性分析,认知建模和人工智能研究社区可能会从研究投资中获得更大的科学回报——可能会实现对架构和模型的更好理解。我们用提交给动态库存和流量(DSF)模型比较挑战的两个模型来展示这种方法处方,探索架构机制、知识级别策略变体和任务条件之间的复杂相互作用。为了应对这些分析的计算需求,我们使用类似于回归树的预测分析方法,结合高性能计算集群的并行化,以实现大规模,同时搜索和探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信