{"title":"Integrating Machine Learning with HPC-driven Simulations for Enhanced Student Learning","authors":"V. Jadhao, J. Kadupitiya","doi":"10.1109/EduHPC51895.2020.00009","DOIUrl":null,"url":null,"abstract":"We explore the idea of integrating machine learning (ML) with high performance computing (HPC)-driven simulations to address challenges in using simulations to teach computational science and engineering courses. We demonstrate that a ML surrogate, designed using artificial neural networks, yields predictions in excellent agreement with explicit simulation, but at far less time and computing costs. We develop a web application on nanoHUB that supports both HPC-driven simulation and the ML surrogate methods to produce simulation outputs. This tool is used for both in-classroom instruction and for solving homework problems associated with two courses covering topics in the broad areas of computational materials science, modeling and simulation, and engineering applications of HPC-enabled simulations. The evaluation of the tool via in-classroom student feedback and surveys shows that the ML-enhanced tool provides a dynamic and responsive simulation environment that enhances student learning. The improvement in the interactivity with the simulation framework in terms of real-time engagement and anytime access enables students to develop intuition for the physical system behavior through rapid visualization of variations in output quantities with changes in inputs.","PeriodicalId":269408,"journal":{"name":"2020 IEEE/ACM Workshop on Education for High-Performance Computing (EduHPC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM Workshop on Education for High-Performance Computing (EduHPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EduHPC51895.2020.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We explore the idea of integrating machine learning (ML) with high performance computing (HPC)-driven simulations to address challenges in using simulations to teach computational science and engineering courses. We demonstrate that a ML surrogate, designed using artificial neural networks, yields predictions in excellent agreement with explicit simulation, but at far less time and computing costs. We develop a web application on nanoHUB that supports both HPC-driven simulation and the ML surrogate methods to produce simulation outputs. This tool is used for both in-classroom instruction and for solving homework problems associated with two courses covering topics in the broad areas of computational materials science, modeling and simulation, and engineering applications of HPC-enabled simulations. The evaluation of the tool via in-classroom student feedback and surveys shows that the ML-enhanced tool provides a dynamic and responsive simulation environment that enhances student learning. The improvement in the interactivity with the simulation framework in terms of real-time engagement and anytime access enables students to develop intuition for the physical system behavior through rapid visualization of variations in output quantities with changes in inputs.