Digant Rastogi, Manika Jain, M. M. Rayguru, S. K. Valluru
{"title":"Design & Validation of ANN based Reinforcement Learning Control Algorithm for Coupled Tank System","authors":"Digant Rastogi, Manika Jain, M. M. Rayguru, S. K. Valluru","doi":"10.1109/I2CT57861.2023.10126494","DOIUrl":null,"url":null,"abstract":"This paper presents a framework to apply Reinforcement Learning control algorithm on benchmark nonlinear dynamical systems. This work focuses on a novel Artificial Neural Network (ANN) based dynamic programming approach using Value Iteration to obtain optimal control for continuous-time nonlinear system. In particular, Coupled Tank System has been chosen to represent benchmark nonlinear dynamical system. The proposed Artificial Neural Network-Reinforcement Learning (ANN-RL) algorithm, Naive Reinforcement Learning (Naive-RL) algorithm and traditional PID control schemes are investigated on coupled tank system. The ANN-RL algorithm performs better than the Naive-RL and PID controllers in terms of steady state error, stability, oscillations and overshoot.","PeriodicalId":150346,"journal":{"name":"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CT57861.2023.10126494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a framework to apply Reinforcement Learning control algorithm on benchmark nonlinear dynamical systems. This work focuses on a novel Artificial Neural Network (ANN) based dynamic programming approach using Value Iteration to obtain optimal control for continuous-time nonlinear system. In particular, Coupled Tank System has been chosen to represent benchmark nonlinear dynamical system. The proposed Artificial Neural Network-Reinforcement Learning (ANN-RL) algorithm, Naive Reinforcement Learning (Naive-RL) algorithm and traditional PID control schemes are investigated on coupled tank system. The ANN-RL algorithm performs better than the Naive-RL and PID controllers in terms of steady state error, stability, oscillations and overshoot.