Bio-inspired tendon driven mechanism for simultaneous finger joints flexion using a soft hand exoskeleton

Mohammed H. Abdelhafiz, E. Spaich, S. Došen, L. Struijk
{"title":"Bio-inspired tendon driven mechanism for simultaneous finger joints flexion using a soft hand exoskeleton","authors":"Mohammed H. Abdelhafiz, E. Spaich, S. Došen, L. Struijk","doi":"10.1109/ICORR.2019.8779547","DOIUrl":null,"url":null,"abstract":"A new tendon driven mechanism, embedded into a soft hand exoskeleton for rehabilitation and assistance, was proposed in this study. The proposed solution was a pulley flexion mechanism inspired by the human musculoskeletal system to enable a natural and comfortable finger flexion. A biomechanical constraint for the finger flexion motion states that the relation between the proximal interphalangeal joint angle of the finger should always be flexed around 1.5 times the distal interphalangeal joint angle. The study aimed to comply with this constraint, by simultaneously distributing the forces over the distal and middle finger phalanges. For evaluation, the voluntary and exoskeleton flexions were compared based on the relation between the proximal and distal interphalangeal joint angles. The results showed that during the exoskeleton flexion the relation between the interphalangeal joints complied with the biomechanical constraint, where the proximal interphalangeal joint angle was 1.5 times larger than the distal interphalangeal joint. This ensures that the mechanism flexes the finger comfortably. The proposed solution is therefore a promising design for a novel soft exoskeleton that will be used for training and assistance of patients with hand paralysis.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR.2019.8779547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

A new tendon driven mechanism, embedded into a soft hand exoskeleton for rehabilitation and assistance, was proposed in this study. The proposed solution was a pulley flexion mechanism inspired by the human musculoskeletal system to enable a natural and comfortable finger flexion. A biomechanical constraint for the finger flexion motion states that the relation between the proximal interphalangeal joint angle of the finger should always be flexed around 1.5 times the distal interphalangeal joint angle. The study aimed to comply with this constraint, by simultaneously distributing the forces over the distal and middle finger phalanges. For evaluation, the voluntary and exoskeleton flexions were compared based on the relation between the proximal and distal interphalangeal joint angles. The results showed that during the exoskeleton flexion the relation between the interphalangeal joints complied with the biomechanical constraint, where the proximal interphalangeal joint angle was 1.5 times larger than the distal interphalangeal joint. This ensures that the mechanism flexes the finger comfortably. The proposed solution is therefore a promising design for a novel soft exoskeleton that will be used for training and assistance of patients with hand paralysis.
利用柔软的手外骨骼实现手指关节同时弯曲的仿生肌腱驱动机制
在这项研究中,提出了一种新的肌腱驱动机制,嵌入到柔软的手外骨骼中,用于康复和辅助。提出的解决方案是由人体肌肉骨骼系统启发的滑轮屈曲机制,以实现自然舒适的手指屈曲。手指屈曲运动的生物力学约束表明,手指近端指间关节角度之间的关系应始终屈曲约为远端指间关节角度的1.5倍。该研究旨在通过同时分布在远端和中指指骨上的力来遵守这一约束。为了评估,根据近端和远端指间关节角度之间的关系,比较了自愿屈曲和外骨骼屈曲。结果表明,在外骨骼屈曲过程中,指间关节之间的关系符合生物力学约束,其中近端指间关节角度是远端指间关节角度的1.5倍。这确保了该机构舒适地弯曲手指。因此,提出的解决方案是一种有前途的新型软外骨骼设计,将用于训练和帮助手部麻痹患者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信